Liste der wissenschaftlichen Veröffentlichungen
Professor Dr. Bernd Speiser

 
Stand: Jun 16, 2023
 
Originalarbeiten, Reviews und Beiträge in Sammelbänden 1
  1. B. Speiser und A. Rieker*, J. Chem. Research 1977, (S) 314 - 315; (M) 3601 - 3609; Electrochemical Oxidations. Part 1. Phenoxy Cations in the Anodic Oxidation of Phenolic Compounds.
  2. B. Speiser und A. Rieker, Electrochim. Acta 23, 983 - 989 (1978); Elektroanalytische Untersuchungen - I. Die Auswirkung von Kanteneffekten auf die Zahl der Peaks in cyclischen Voltammogrammen; DOI: https://doi.org/10.1016/0013-4686(78)85003-8.
  3. B. Speiser und A. Rieker, J. Electroanal. Chem. 102, 1 - 20 (1979); Electroanalytical Investigations. Part II. Application of the Orthogonal Collocation Technique to the Simulation of Cyclic Voltammograms; DOI: https://doi.org/10.1016/S0022-0728(79)80025-X.
  4. B. Speiser und A. Rieker*, J. Electroanal. Chem. 102, 373 - 395 (1979); Electrochemical Oxidations. Part IV. Electrochemical Investigations into the Behaviour of 2,6-Di- tert-butyl-4-(4-dimethylaminophenyl)-phenol. Part 1. Phenol and the Species Derived from it: Phenoxy Radical, Phenolate Anion and Phenoxenium Cation; DOI: https://doi.org/10.1016/S0022-0728(79)80465-9.
  5. B. Speiser, J. Electroanal. Chem. 110, 69 -77 (1980); Electroanalytical Investigations. Part III. Optimization of the Dimensionless Parameter β in Orthogonal Collocation Simulations of Cyclic Voltammograms; DOI: https://doi.org/10.1016/S0022-0728(80)80365-2.
  6. B. Speiser und A. Rieker*, J. Electroanal. Chem. 110, 231 - 246 (1980); Electrochemical Oxidations. Part V. Electrochemical Investigations into the Behaviour of 2,6-Di- tert-butyl-4-(4-dimethylaminophenyl)-phenol. Part 2. Anodic Oxidation in the Presence of 2,6-Dimethylpyridine and the Mechanism of the Formation of the Phenoxenium Cation; DOI: https://doi.org/10.1016/S0022-0728(80)80376-7.
  7. B. Speiser, Chemie in uns. Zeit 15, 21 - 26 (1981); Elektroanalytische Methoden. I. Grundlagen und Chronoamperometrie; DOI: https://doi.org/10.1002/ciuz.19810150105.
  8. B. Speiser, Chemie in uns. Zeit 15, 62 - 67 (1981); Elektroanalytische Methoden. II. Cyclische Voltammetrie; DOI:  https://doi.org/10.1002/ciuz.19810150206.
  9. B. Speiser und S. Pons, Can. J. Chem. 60, 1352 - 1362 (1982); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 1. Two-dimensional Collocation and Theory for Chronoamperometry; DOI: https://doi.org/10.1139/v82-199.
  10. B. Speiser und S. Pons*, Can. J. Chem. 60, 2463 - 2476 (1982); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 2. Theory for Cyclic Voltammetry; DOI: https://doi.org/10.1139/v82-357.
  11. B. Speiser, S. Pons und A. Rieker, Electrochim. Acta 27, 1171 - 1176 (1982); Electroanalytical Investigations. - IV. Use of Orthogonal Collocation for the Simulation of Quasireversible Electrode Processes under Potential Scan Conditions; DOI: https://doi.org/10.1016/0013-4686(82)80132-1.
  12. S. Pons, B. Speiser und J.F. McAleer, Electrochim. Acta 27, 1177 - 1179 (1982); Orthogonal Collocation Simulation of the Rotating Disk Electrode; DOI: https://doi.org/10.1016/0013-4686(82)80133-3.
  13. S. Pons, B. Speiser, J.F. McAleer und P.P. Schmidt, Electrochim. Acta 27, 1711 -1714 (1982); Simulation of the Dropping Mercury Electrode by Orthogonal Collocation; DOI: https://doi.org/10.1016/0013-4686(82)80167-9.
  14. B. Speiser und S. Pons, Can. J. Chem. 61, 156 -162 (1983); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 3. Application to Chronoamperometric Experiments; DOI: https://doi.org/10.1139/v83-028.
  15. B. Speiser, A. Rieker und S. Pons, J. Electroanal. Chem.  147, 205 - 222 (1983); Electrochemistry of Anilines. Part I. Oxidation of 2,6-Di-tert-butyl-anilines to Radical Cations: General Considerations, Electroanalytical Experiments and Spectroscopy; DOI: https://doi.org/10.1016/S0022-0728(83)80067-9.
  16. B. Speiser, A. Rieker und S. Pons, J. Electroanal. Chem.  159, 63 - 88 (1983); Electrochemistry of Anilines. Part II. Oxidation to Dications, Electrochemical and UV/VIS Spectroelectrochemical Investigation; DOI: https://doi.org/10.1016/S0022-0728(83)80315-5.
  17. J.F. Cassidy, S. Pons*, A.S. Hinman und B. Speiser, Can. J.  Chem. 62, 716 - 720 (1984); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 4. Application to Voltammetric Experiments; DOI: https://doi.org/10.1139/v84-120.
  18. B. Speiser, J. Electroanal. Chem. 171, 95 - 109 (1984); Electroanalytical Investigations. Part V. The Simulation of Fast Chemical Reactions in Cyclic Voltammetry by a Combination of the Orthogonal Collocation Method and the Heterogeneous Equivalent Approach; DOI: https://doi.org/10.1016/0022-0728(84)80108-4.
  19. B. Speiser, Anal. Chem. 57, 1390 - 1397 (1985); Multiparameter Estimation: Extraction of Information from Cyclic Voltammograms; DOI: https://doi.org/10.1021/ac00284a047..
  20. P. Hertl, A. Rieker und B. Speiser, J. Electroanal. Chem.  200, 147 - 158 (1986); Electrochemistry of Anilines. Part III. Electrochemical Oxidation of Sterically Hindered 4-Aminobiphenyls and Correlation of Formal Potentials with Hammett σ Values; DOI: https://doi.org/10.1016/0022-0728(86)90052-5.
  21. P. Hertl und B. Speiser, J. Electroanal. Chem. 217, 225 - 238 (1987); Electroanalytical Investigations. Part VI. The Simulation of Fast Chemical Equilibrium Reactions in Cyclic Voltammetric Reaction-Diffusion Models with Spline Collocation; DOI: https://doi.org/10.1016/0022-0728(87)80220-6.
  22. P. Hertl und B. Speiser, J. Electroanal. Chem. 235, 57 - 70 (1987); Electroanalytical Investigations. Part VII. The Simulation of Fast Chemical Equilibrium Reactions in Cyclic Voltammetric Reaction-Diffusion Models with a Combination of the Heterogeneous Equivalent Technique and Orthogonal Collocation; DOI: https://doi.org/10.1016/0022-0728(87)85197-5.
  23. P. Urban und B. Speiser*, J. Electroanal. Chem. 241,   17 - 31 (1988); Electroanalytical Investigations. Part VIII. The Use of an Expanding Simulation Space in the Simulation of Electrochemical Reaction-Diffusion Models with Orthogonal Collocation; DOI: https://doi.org/10.1016/0022-0728(88)85113-1.
  24. P. Hertl und B. Speiser*, J. Electroanal. Chem. 250, 237 - 256 (1988); Electroanalytical Simulations. Part IX - The Simulation of a Second-Order Chemical Reaction Preceding a Reversible Electron Transfer under Cyclic Voltammetric Conditions Using Orthogonal Collocation; DOI: https://doi.org/10.1016/0022-0728(88)85166-0.
  25. B. Scharbert und B. Speiser*, J. Chemomet. 3, 61 - 80 (1988); Chemical Information from Electroanalytical Data. Part 1. Determination of System Parameters for Quasi-Reversible Electron Transfer Reactions from Cyclic Voltammetric Test Data and Data for the Reduction of Cerium(IV)bis(octaethylporphyrinate); DOI: https://doi.org/10.1002/cem.1180030108.
  26. A. Dettling, A. Rieker* und B. Speiser*, Tetrahedron Lett. 29, 4533 - 4534 (1988); Reversible Electrochemical Oxidation of 2,5,8,11-Tetra-tert-butyl-peri-xanthenoxanthene to its Radical Cation and Dication; DOI: https://doi.org/10.1016/S0040-4039(00)80539-0.
  27. B. Speiser und A. Rieker, Nachr. Chem. Tech. Lab. 37, 616 - 618 (1989); Energie durch elektrochemisch induzierte Kernfusion?; DOI: https://doi.org/10.1002/nadc.19890370618.
  28. B. Speiser in G. Gauglitz (Hrsg.), Softwareentwicklung in der Chemie, Band 3, Springer, Berlin, 1989, S. 321 - 332; EASIEST - A Program System for Electroanalytical Simulation and Parameter Estimation. Teil 2. EASIEST - ein Programmsystem zur Simulation von und Parameterbestimmung aus elektroanalytischen Experimenten.
  29. B. Speiser, Comput. Chem., 14, 127 - 140 (1990); EASIEST - A Program System for Electroanalytical Simulation and Parameter Estimation. Part 1. Simulation of Cyclic Voltammetric and Chronoamperometric Experiments; DOI: https://doi.org/10.1016/0097-8485(90)80017-V.
  30. A. Rieker und B. Speiser, Tetrahedron Lett. 31, 5013 - 5014 (1990); Electrochemistry of Anilines. Part 5. Spectroscopic and Electrochemical Characterization of a Persistent Biphenylyl Nitrenium Ion; DOI: https://doi.org/10.1016/S0040-4039(00)97792-X.
  31. B. Speiser in J. Gasteiger (Hrsg.), Software Development in Chemistry 4, Springer, Berlin, 1990, S. 321 - 330; Electroanalytical Simulations. Part 10. The Simulation of Fast Second Order Reactions in Electrochemical Systems.
  32. B. Speiser, Trends in Anal. Chem., 10, 9 - 11 (1991); EASIEST - A Program System for Electroanalytical Simulation and Parameter Estimation. Part 3. Second-order Catalytic Electrode Reactions at Amperometric Biosensors. The Application of Polynomial and B-Spline Interpolation to the Description of Cyclic Voltammetric Features; DOI: https://doi.org/10.1016/0165-9936(91)85038-S.
  33. B. Speiser, Anal. Chim. Acta, 243, 301 - 310 (1991); Electroanalytical Simulations, Part 11. Orthogonal Collocation Simulation of Fast Second-order Chemical Reactions Coupled to an Electron Transfer with a Heterogeneous Equivalent Formulation; DOI: https://doi.org/10.1016/S0003-2670(00)82574-X.
  34. B. Speiser, J. Electroanal. Chem., 301, 15 - 35 (1991); Chemical Information from Electroanalytical Data. Part 2. Determination of Rate and Equilibrium Constants of a Chemical Reaction Preceding a Reversible Electron Transfer from Cyclic Voltammetric Data; DOI: https://doi.org/10.1016/0022-0728(91)85456-Y; Erratum: J. Electroanal. Chem. 306, 313 (1991); DOI: https://doi.org/10.1016/0022-0728(91)85245-K.
  35. P. Hertl, A. Rieker und B. Speiser*, J. Electroanal. Chem., 301, 37 - 52 (1991); Electrochemistry of Anilines. Part 4. Determination of Rate and Equilibrium Constants for the Protonation of 2,6-Di-t-butyl-4-(4′-R-phenyl)-anilines in Acetonitrile from Cyclic Voltammetric Data; DOI: https://doi.org/10.1016/0022-0728(91)85457-Z; Erratum: J. Electroanal. Chem. 306, 313 (1991); DOI: https://doi.org/10.1016/0022-0728(91)85246-L.
  36. B. Speiser*, A. Leverenz und M. Hanack, Synth. Met., 41 - 43, 2979 - 2982 (1991); The Mechanism of Na[PcCo(CN)2] Electrocrystallization - Analysis of Adsorption Phenomena by a Comparison of Simulated and Experimental Cyclic Voltammograms; DOI: https://doi.org/10.1016/0379-6779(91)91220-5.
  37. A. Nishinaga, K. Tajima, B. Speiser, E. Eichhorn, A. Rieker, H. Ohya-Nishiguchi und K. Ishizu, Chem. Lett. 20, 1403 - 1406 (1991); Substituent Effects on the Formal Potential of the Co( II)/Co( III) Redox Couple for Co(salen) Derivatives; DOI: https://doi.org/10.1246/cl.1991.1403.
  38. A. Rieker* und B. Speiser, J. Org. Chem., 56, 4664 - 4671 (1991); Electrochemistry of Anilines. 6. Reactions of Electrogenerated Biphenylyl Nitrenium Ions; DOI: https://doi.org/10.1021/jo00015a019; Erratum: J. Org. Chem. 56, 6728 (1991); DOI: https://doi.org/10.1021/jo00023a053.
  39. A. Rieker*, B. Speiser, K.-M. Mangold und M. Hanack, Z.  Naturforsch., 46b, 1125 - 1126 (1991); Potential Error Sources in Combined Electrochemistry/Neutron Detection Experiments; DOI: https://doi.org/10.1515/znb-1991-0826.
  40. U. Löffler, W. Göpel und B. Speiser*, Electroanalysis, 3, 917 - 923 (1991); The Determination of Electron Transfer Parameters for Monosubstituted Ferrocenes Suitable as Mediators in Amperometric Biosensors; DOI: https://doi.org/10.1002/elan.1140030907.
  41. A. Leverenz und B. Speiser*, J. Electroanal. Chem., 318, 69 - 89 (1991); Electroanalytical Simulations. Part 13. The Simulation of Adsorption Processes at an Electrode by Orthogonal Collocation Algorithms; DOI: https://doi.org/10.1016/0022-0728(91)85295-Z.
  42. E. Eichhorn, A. Rieker und B. Speiser*, Anal. Chim. Acta, 256, 243 - 249 (1992); Numerical Method to Correct iR Drop Errors in Cyclic Voltammetric Potential Data for (Quasi)Reversible Electrode Processes; DOI: https://doi.org/10.1016/0003-2670(92)85350-F.
  43. B. Gollas und B. Speiser*, Angew. Chem., 104, 336 - 338 (1992), Elektrochemie von Triazenen, 1. Mitteilung. Elektrochemische Oxidation von 1-p-Dimethylaminaophenyl-3,3-dimethyltriazen - cyclovoltammetrischer Nachweis eines Triazen-Radikalkations und -Dikations; DOI:  https://doi.org/10.1002/ange.19921040327; Angew. Chem. Int. Ed. Engl., 31, 332 - 334 (1992); Electrochemistry of Triazenes, Part 1. Electrochemical Oxidation of 1-( p-Dimethylaminophenyl)-3,3-dimethyltriazene - Cyclic Voltammetric Detection of a Triazene Radical Cation and Dication; DOI: https://doi.org/10.1002/anie.199203321.
  44. A. Rieker*, P. Hertl und B. Speiser, in R. Louw und P. Mulder (Hrsg.), Sixth Int. Symp. Org. Free Rad., Noordwijkerhout, CCE, Gorlaeus Labs, Leiden University, Leiden, Netherlands, 1992, S. 256 - 259 (ISBN: 90-9004445-0); Persistent Radicals Derived from Primary Anilines.
  45. A. Leverenz, B. Speiser* und M. Hanack, J. Electroanal. Chem., 323, 275 - 287 (1992); Cyclic Voltammetry of Na[PcCo(CN)2] - Analysis of Adsorption Phenomena During Electro-oxidation; DOI: https://doi.org/10.1016/0022-0728(92)80016-W.
  46. A. Rieker, B. Speiser und H. Straub, in G. Sandstede (Hrsg.), DECHEMA-Monographien, Band 125, 777 - 782 (1992); Reaktionen anodisch erzeugter Phenoxeniumionen mit Nucleophilen.
  47. A. Nishinaga*, S. Förster, E. Eichhorn, B. Speiser and A. Rieker*, Tetrahedron Lett. 33, 4425 - 4428 (1992); Co(salen) Catalyzed Oxidation of 2,4,6-Trisubstituted Anilines with tert-Butylhydroperoxide; DOI: https://doi.org/10.1016/S0040-4039(00)60100-4.
  48. B. Speiser* und H. Stahl, Tetrahedron Lett. 33, 4429 - 4432 (1992); Electrochemistry of Triazenes - 2. Formation of the 2,7-Dimethoxy-5,10-dimethyl-5,10-dihydrophenazine Radical Cation during Oxidation of 1,3-Diaryl-3-methyltriazenes; DOI: https://doi.org/10.1016/S0040-4039(00)60101-6.
  49. E. Eichhorn, A. Rieker und B. Speiser*, Angew. Chem., 104, 1246 - 1248 (1992); Elektrochemie von Oxygenierungskatalysatoren, 1. Mitteilung. Die elektrochemische Oxidation von [CoII(salen)] in Lösungsmittelgemischen - ein Beispiel für ein Leiterschema mit gekoppelten Elektronentransfer- und Lösungsmittelaustauschreaktionen; DOI: https://doi.org/10.1002/ange.19921040926; Angew. Chem. Int. Ed., 31, 1215 - 1217 (1992), Electrochemistry of Oxygenation Catalysts, Part 1. The Electrochemical Oxidation of [CoII(salen)] in Solvent Mixtures - An Example of a Ladder Scheme with Coupled Electron-Transfer and Solvent-Exchange Reactions; DOI: https://doi.org/10.1002/anie.199212151.
  50. E. Eichhorn, A. Rieker, B. Speiser*, J. Sieglen und J. Strähle, Z. Naturforsch., 48b, 418 - 424 (1993); Electrochemistry of Oxygenation Catalysts. Part 2. Improved Synthesis, Crystal Structure, and Electrochemical Properties of N,N ′-Bis(salicyliden)ethylenediaminatocobalt(III) Chloride; DOI: https://doi.org/10.1515/znb-1993-0404.
  51. C. Schulz und B. Speiser*, J. Electroanal. Chem., 354, 255 - 271 (1993); Electroanalytical Simulations. Part 14. Simulation of Frumkin-Type Adsorption Processes by Orthogonal Collocation under Cyclic Voltammetric Conditions; DOI: https://doi.org/10.1016/0022-0728(93)80338-I; Erratum: J. Electroanal. Chem., 362, 305 (1993); DOI: https://doi.org/10.1016/0022-0728(93)80036-H.
  52. B. Speiser, Acta Chem. Scand., 47, 1238 -1240 (1993); Electrochemical Simulations. Part 15. Advanced Orthogonal Collocation Techniques in Problem Situations of the ECcat Mechanism. A Comment on the Paper "Efficiency of Electrochemical Kinetic Simulations by Orthogonal Collocation and Finite Difference Methods. A Comparison" by L.K. Bieniasz and D. Britz; DOI: https://doi.org/10.3891/acta.chem.scand.47-1238.
  53. T. Vering*, W. Schuhmann, D. Seiwald, H.-L. Schmidt, B. Speiser und L. Ye, J. Electroanal. Chem., 364, 277 - 279 (1994); A Potentiostatic Multi-puls Method Using Redox Polymers for Potentiometric Measurements of Enzymatic Redox-Reactions; DOI: https://doi.org/10.1016/0022-0728(93)03177-Q.
  54. E. Eichhorn und B. Speiser*, J. Electroanal. Chem., 365, 207 - 212 (1994); Electrochemistry of Oxygenation Catalysts. Part 4. Solvent-Composition-Dependent Isopotential Points in Cyclic Voltammograms of Co(salen)+; DOI: https://doi.org/10.1016/0022-0728(93)03058-W.
  55. B. Gollas, B. Krauß, B. Speiser* und H. Stahl, Curr. Sep., 13, 42 - 44 (1994); Design of a Single-Unit Haber-Luggin Capillary/Dual Reference-Electrode System.
  56. L. Dunsch, B. Gollas, A. Neudeck, A. Petr, B. Speiser* und H. Stahl, Chem. Ber., 127, 2423 - 2429 (1994); Electrochemistry of Triazenes, 3. One-Electron Oxidation of Aryltriazenes to Radical Cations; DOI: https://doi.org/10.1002/cber.19941271213.
  57. E. Eichhorn, A. Rieker*, B. Speiser und H. Stahl, in S. Torii (Hrsg.), Novel Trends in Electroorganic Synthesis, Proc. 2nd Intl. Symp. Electroorg. Synth., Kodansha, Tokyo, 1994 (Publ. 1995), S. 173 - 174 (ISBN: 4-06-207503-2); Electrochemical Investigation of Oxygenation Catalysts.
  58. B. Speiser* und H. Stahl, Angew. Chem., 107, 1222 - 1224 (1995); Elektrochemie von Oxygenierungskatalysatoren, 5. Mitteilung. Komplexierung von [N,N ′-Bis(salicyliden)ethylendiiminato]cobalt(III) durch Aniline in Dimethylformamid; DOI: https://doi.org/10.1002/ange.19951071022; Angew. Chem. Int. Ed. Engl., 34, 1086 - 1089 (1995); Electrochemistry of Oxygenation Catalysts, Part 5. Complexation of [N, N′-Bis(salicylidene)ethylenediiminato]cobalt(III)+ by Anilines in Dimethylformamide; DOI:  https://doi.org/10.1002/anie.199510861.
  59. X. Wei und B. Speiser*, Electrochim. Acta, 40, 2477 - 2482 (1995); Electrochemistry of Triazenes - Part 4. Reaction of Diazonium Ions Generated Electrochemically from 1-Aryl-3,3-dimethyltriazenes in Acetonitrile; DOI: https://doi.org/10.1016/0013-4686(95)00134-Z.
  60. B. Gollas, B. Speiser*, J. Sieglen und J. Strähle, Organometallics, 15, 260 - 271 (1996); Electrochemistry of Ruthenium Metallocenes. 1. Synthesis, NMR, and Anodic Electrochemical Behavior of Vinyl-Substituted Ruthenium Cyclophane Complexes; DOI: https://doi.org/10.1021/om9504314.
  61. G. Frenking, A. Rieker*, J. Salbeck und B. Speiser, Z. Naturforsch., 51b, 377 - 380 (1996); 2,5,8,11-Tetra-tert-butyl-peri-xanthenoxanthene and its Dication. Spectroelectrochemistry and Model Calculations on a Dioxa-22-π-system; DOI: https://doi.org/10.1515/znb-1996-0313.
  62. B. Gollas, B. Speiser*, H. Stahl, J. Sieglen und J. Strähle, Z. Naturforsch., 51b, 388 - 398 (1996); Electrochemistry of Oxygenation Catalysts, Part 6. Electrosynthesis, Structure, Analytical, and Electrochemical Properties of Monomeric [CoIII(salen)(DMF)2]+ X Salts (X = PF6, ClO4); DOI: https://doi.org/10.1515/znb-1996-0315.
  63. B. Speiser, J. Electroanal. Chem., 413, 67 - 79 (1996); Electroanalytical Simulations. Part 16. Simulation of Controlled Current Bulk Electrolysis Experiments by Orthogonal Collocation: General Model and Simple Charge Transfer Mechanisms; DOI: https://doi.org/10.1016/0022-0728(96)04639-6.
  64. B. Speiser, Angew. Chem., 108, 2623 - 2626 (1996); Elektronentransfer und chemische Reaktion: schrittweise oder konzertiert? - zur Konkurrenz von nucleophiler Substitution und Elektronenübertragung; DOI: https://doi.org/10.1002/ange.19961082106; Angew. Chem. Int. Ed. Engl. 35, 2471 - 2474 (1996); Electron Transfer and Chemical Reactionss - Stepwise or Concerted? On the Competition between Nucleophilic Substitution and Electron Transfer; DOI: https://doi.org/10.1002/anie.199624711.
  65. M. Hecht, F.A. Schultz und B. Speiser, Inorg. Chem., 35, 5555 - 5563 (1996); Ligand Structural Effects on the Electrochemistry of Chromium(III) Aminocarboxylate Complexes; DOI: https://doi.org/10.1021/ic960152o.
  66. B. Speiser in A.J. Bard und I. Rubinstein (Hrsg.), Electroanalytical Chemistry, Vol. 19, Simulation of Electroanalytical Experiments by Numerical Methods - Recent Advances, Marcel Dekker, New York, 1996, S. 1 - 108 (ISBN: 0-8247-9379-X).
  67. B. Gollas und B. Speiser, in F. Beck (Hrsg.), Elektrochemie der Elektronenleiter. Metalle - Oxide - Polymere, Beiträge der Jahrestagung der GDCh-Fachgruppe Angewandte Elektrochemie, GDCh-Monographie, Band 3, Gesellschaft Deutscher Chemiker, Frankfurt, 1996, S. 580 (ISBN: 3-924763-56-9); Elektrochemische Redoxreaktionen von Rutheniumkomplexen aromatischer Liganden: Redoxpolymerfilme aus Vinylcyclophan-Ruthenium-Metallocenen.
  68. S. Dümmling, E. Eichhorn, S. Schneider, B. Speiser* und M. Würde, Curr. Sep., 15, 53 - 56 (1996); Recycling of the Supporting Electrolyte Tetra(n -butyl)ammonium Hexafluorophosphate from Used Electrolyte Solutions.
  69. X. Wei und B. Speiser*, Electrochim. Acta, 42, 73 - 79 (1997); Ring Formation from 2-Arylazo-3-aminocrotononitriles to 1,2,3[2H]-triazole-4-carbonitriles and Pyrazoles by Anodic Oxidation; DOI: https://doi.org/10.1016/0013-4686(96)00168-5.
  70. E. Eichhorn, A. Rieker und B. Speiser*, Z. Anorg. Allg. Chem., 623, 810 - 817 (1997); Elektrochemie von Oxygenierungskatalysatoren. 7. Synthese und Elektrochemie von Komplexen des Co(salen)-Typs mit zwei potentiellen über Spacer angebundenen axialen basischen Liganden; DOI: https://doi.org/10.1002/zaac.199762301128.
  71. B. Gollas, B. Speiser, J. Sieglen, J. Strähle und C. Maichle-Mössmer, Z. Kristallogr. NCS, 212, 269 - 270 (1997); Crystal Structure of Bis(biphenyl)chromium(I)iodide Chloroform Solvate, [(C12H10)2CrI] · CHCl3; DOI: https://doi.org/10.1524/ncrs.1997.212.1.269.
  72. B. Gollas, B. Speiser, J. Sieglen, J. Strähle und C. Maichle-Mössmer, Z. Kristallogr. NCS, 212, 271 - 272 (1997); Crystal Structure of E-4-(2′-Ethoxycarbonyl-2′-methyl)-ethenyl-[22]paracyclophane, C22H24O2; DOI: https://doi.org/10.1524/ncrs.1997.212.1.271.
  73. E. Eichhorn, A. Rieker, B. Speiser* und H. Stahl, Inorg. Chem., 36, 3307 - 3317 (1997); Electrochemistry of Oxygenation Catalysts. 3. Thermodynamic Characterization of Electron Transfer and Solvent Exchange Reactions of Co(salen)/[Co(salen)]+ in DMF, Pyridine and Their Mixtures; DOI: https://doi.org/10.1021/ic9703336.
  74. B. Gollas, I. Hesse, R. Lotz, H. Pasch, B. Speiser* und I. Zagos, Liebigs. Ann./Recueil, 1997, 2255 - 2264; Electrochemical Oxidation of 4-Ethenyl-[22]paracyclophane: Cyclic Voltammetry, Electrosynthesis of Polymers, Analysis by Liquid Chromatography and Mass Spectrometry; DOI: https://doi.org/10.1002/jlac.199719971112.
  75. N. Kuhn*, G. Weyers, S. Dümmling, und B. Speiser*, Phosphorus, Sulfur, and Silicon 128, 45 - 62 (1997); Derivate des Imidazols. 25. Reduktion von Carben-Addukten des Kohlenstoffdisulfids: ein neuer Weg zu elektronenreichen 1,1-Dithiolaten; DOI: http://dx.doi.org/10.1080/10426509708031563.
  76. B. Speiser*, M. Würde und C. Maichle-Mössmer, Chem. Eur. J., 4, 222 - 233 (1998); Electrochemistry of Polyaminobenzenes, Part 1. Electrochemical Oxidation of Hexakis(dimethylamino)benzene; DOI: https://doi.org/10.1002/(SICI)1521-3765(19980210)4:2<222::AID-CHEM222>3.0.CO;2-H.
  77. L.K. Bieniasz* und B. Speiser, J. Electroanal. Chem., 441, 271 - 285 (1998); Use of Sensitivity Analysis Methods in the Modelling of Electrochemical Transients. Part 1. Gaining More Insight into the Behaviour of Kinetic Models; DOI: https://doi.org/10.1016/S0022-0728(97)00443-9. Erratum: J. Electroanal. Chem., 452, 139 (1998); DOI: https://doi.org/10.1016/S0022-0728(98)00181-8.
  78. L.K. Bieniasz*, S. Dümmling, B. Speiser* und M. Würde, J. Electroanal. Chem., 447, 173 - 186 (1998); Use of Sensitivity Analysis Methods in the Modelling of Electrochemical Transients. Part 2. Model Expansion and Model Reduction; DOI: https://doi.org/10.1016/S0022-0728(97)00599-8.
  79. L.K. Bieniasz* und B. Speiser, J. Electroanal. Chem., 458, 209 - 229 (1998); Use of Sensitivity Analysis Methods in the Modelling of Electrochemical Transients. Part 3. Statistical Error/Uncertainty Propagation in Simulation and in Nonlinear Least-Squares Parameter Estimation; DOI: https://doi.org/10.1016/S0022-0728(98)00354-4.
  80. E. Lindner*, I. Krebs, R. Fawzi, M. Steimann und B. Speiser, Organometallics, 18, 480 - 489 (1999); Preparation, Properties, and Reactions of Metal-Containing Heterocycles. 98. Synthesis, Structure, and Electrochemistry of Osmametallocenophanes with Different Ring Size; DOI: https://doi.org/10.1021/om980713e.
  81. B. Speiser, Curr. Org. Chem., 3, 171 - 191 (1999); From Cyclic Voltammetry to Scanning Electrochemical Microscopy: Modern Electroanalytical Methods to Study Organic Compounds, Materials, and Reactions; DOI: https://doi.org/10.2174/1385272803666220131201235.
  82. B. Speiser und S. Dümmling, in J. Russow, G. Sandstede und R. Staab (Hrsg.), GDCh-Monographien, Band 14, Gesellschaft Deutscher Chemiker, Frankfurt, 1999, 33 - 39 (ISBN: 3-924763-74-7); Zweielektronentransfer-Redoxsysteme. Teil 1. Cyclovoltammetrische Charakterisierung von Zweielektronentransfers an organischen und metallorganischen Molekülen (gleichzeitig: Electrochemie von Rutheniummetallocenen, Teil 2).
  83. B. Speiser*, C. Tittel, W. Einholz und R. Schäfer, J. Chem. Soc., Dalton Trans., 1999, 1741 - 1751; Two-Electron-Transfer Redox Systems. Part 2. Redox Reactions of the Boron Subhalide Clusters BnCln0/•−/2− (n=8,9) Investigated by Electrochemical and Spectroscopic Methods; DOI: https://doi.org/10.1039/A809134J.
  84. S. Dümmling, B. Speiser*, N. Kuhn und G. Weyers, Acta Chem. Scand., 53, 876 - 886 (1999); Two-Electron-Transfer Redox Systems. Part 3. Electrochemical Reduction of N,N ′-Dialkyl-4,5-dimethylimidazolium-2-dithiocarboxylates to 1,1-Dithiolate Dianions in THF. Steric Modulation of Potential Ordering by Substituents; DOI: https://doi.org/10.3891/acta.chem.scand.53-0876.
  85. M.P. Feth, U. Reinöhl, T.S. Ertl, M. Seiler, H. Bertagnolli, S. Maier, B. Speiser und H.A. Mayer, HASYLAB Ann. Rep. 780 - 781 (1999); EXAFS Investigation of Organometallic Iridium Complexes.
  86. B. Speiser*, M. Würde und M.G. Quintanilla, Electrochem. Commun., 2, 65 - 68 (2000); Electrochemistry of Polyaminobenzenes. Part 2. Oxidation of Hexakis(dimethylamino)benzene at High Potentials; DOI: https://doi.org/10.1016/S1388-2481(99)00141-1.
  87. N. Kuhn*, H. Kotowski, M. Steimann, B. Speiser*, M. Würde und G. Henkel, J. Chem. Soc., Perkin Trans. 2, 2000, 353 - 363; Synthesis, Oxidation and Protonation of Octamethyl-1,1′-bipyrrole; DOI: https://doi.org/10.1039/A905603C.
  88. B. Gollas, B. Speiser*, I. Zagos und C. Maichle-Mössmer, J. Organomet. Chem., 602, 75 - 90 (2000); Electrochemistry of Ruthenium Metallocenes. Part 3. Synthesis and Properties of Ruthenium [22]Paracyclophane Complexes with Methacrylic Acid and Methacrylate Ester Substituents; DOI: https://doi.org/10.1016/S0022-328X(00)00121-2.
  89. J.J. Wolff*, A. Zietsch, B. Nuber, F. Gredel, B. Speiser* und M. Würde, J. Org. Chem., 66, 2769 - 2777 (2001); Electrochemistry of Polyaminobenzenes. Part 3. Hexaaminobenzene Derivatives: Synthesis and Unusual Oxidation Behavior; DOI: https://doi.org/10.1021/jo005744+.
  90. S. Buchmann, H.A. Mayer, B. Speiser*, M. Seiler, H. Bertagnolli, S. Steinbrecher und E. Plies, Electrochim. Acta, 46, 3207 - 3217 (2001); Electrochemistry of Transition Metal Complex Catalysts. Part 8. One-Electron Oxidation of an Iridium Complex with a Cyclohexane-Derived Tripod Phosphine Ligand - Cyclic Voltammetry and Preparative Electrolysis; DOI: https://doi.org/10.1016/S0013-4686(01)00612-0.
  91. B. Speiser, K. Ludwig, A. Stauß und M.G. Quintanilla, in D.G. Peters, H.J. Schäfer, M.S. Workentin und J. Yoshida (Hrsgg.), Reactive Intermediates in Organic and Biological Electrochemistry, Proc. Electrochem. Soc., 2001-14, 69 - 72 (2001); Two-Electron-Transfer Redox Systems. Part 4. Electrochemical Oxidation of Hexa(benzylthio)benzene - Formation and Reaction of a Radical Cation.
  92. B. Speiser, W. Märkle und S. Heiß, in J. Russow und H.J. Schäfer, GDCh-Monographie, Band 23, Elektronenübertragung in Chemie und Biochemie, S. 285 - 292 (2001) (ISBN: 3-936028-03-6); Anodische Oxidation von Benzaldehydphenylhydrazonen in Gegenwart von Nitrilen.
  93. W. Einholz*, K. Vaas, C. Wieloch, B. Speiser, T. Wizemann, M. Ströbele und H.-J. Meyer, Z. Anorg. Allg. Chem., 628, 258 - 268 (2002); Zweielektronentransfer-Redoxsysteme, Teil 5. Chemische und cyclovoltammetrische Untersuchung der Redoxreaktionen der Decahalogendecaborate closo-[B10X10]2− und hypercloso-[B10X10]•− (X = Cl, Br). Kristallstrukturanalyse von Cs2[B10Br10] · 2 H2O; DOI: https://doi.org/10.1002/1521-3749(200201)628:1<258::AID-ZAAC258>3.0.CO;2-X.
  94. B. Speiser, Anal. Bioanal. Chem., 372, 29 - 30 (2002); Molecular Electrochemistry; DOI: https://doi.org/10.1007/s00216-001-1153-2.
  95. K. Ludwig und B. Speiser*, J. Electroanal. Chem. 531, 1 - 8 (2002); Electroanalytical Simulations, Part 17. Calculation of Open Circuit Potentials during Fractional Electrolysis in Two-Electron-Transfer Systems; DOI: https://doi.org/10.1016/S0022-0728(02)00997-X.
  96. K. Ludwig, M.G. Quintanilla, B. Speiser* und A. Stauß, J. Electroanal. Chem. 531, 9 - 18 (2002); Two-Electron-Transfer Redox Systems. Part 6. Two-Electron Oxidation of Hexakis(benzylthio)benzene - A Study by Electrolysis and Cyclic Voltammetry; DOI: https://doi.org/10.1016/S0022-0728(02)00996-8.
  97. H.A.Y. Mohammad, J.C. Grimm, K. Eichele, H.-G. Mack, B. Speiser, F. Novak, M.G. Quintanilla, W.C. Kaska und H.A. Mayer*, Organometallics 21, 5775 - 5784 (2002); C-H Oxidative Addition with a (PCP)Ir(III)-Pincer-Complex; DOI: https://doi.org/10.1021/om020621w.
  98. B. Speiser, T. Wizemann und M. Würde, Inorg. Chem., 42, 4018 - 4028 (2003); Two-Electron-Transfer Redox Systems, Part 7. Two-Step Electrochemical Oxidation of the Boron Subhalide Cluster Dianions B6X62− (X = Cl, Br, I); DOI: https://doi.org/10.1021/ic034101k.
  99. S. Buchmann, H.A. Mayer, B. Speiser*, M. Seiler, M.P. Feth, H. Bertagnolli, S. Steinbrecher und E. Plies, Electrochim. Acta, 48, 2725 - 2737 (2003); Electrochemistry of Transition Metal Complex Catalysts. Part 9. One- and Two-Electron Oxidation of Iridium Complexes with Cyclohexane-Derived Tripod Phosphine Ligands; DOI: https://doi.org/10.1016/S0013-4686(03)00338-4. Erratum: Electrochim. Acta, 48, 4319 - 4320 (2003); DOI: https://doi.org/10.1016/j.electacta.2003.08.018.
  100. F. Novak, B. Speiser*, H.A.Y. Mohammad und H.A. Mayer, Electrochim. Acta, 49, 3841 - 3853 (2004); Electrochemistry of Transition Metal Complex Catalysts. Part 10. Intra- and Intermolecular Electrochemically Activated C-H Addition to the Central Metal Atom of a P-C-P-Pincer Iridium Complex; DOI: https://doi.org/10.1016/j.electacta.2003.11.038.
  101. F. Novak, B. Speiser*, E. Lindner, Z.-L. Lu und H.A. Mayer, Angew. Chem., 116, 2059 - 2062 (2004); Elektrochemie von Übergangsmetallkatalysatoren. Teil 11. Eine chemisch modifizierte Platinelektrode als zweizähniger Diaminligand zur Bildung wohldefinierter immobilisierter Bis(η1-P-ether-phosphan)(diamin)ruthenium(II)-Komplexe; DOI:  https://doi.org/10.1002/ange.200353399; Angew. Chem. Int. Ed. 43, 2025 - 2028 (2004); Electrochemistry of Transition-Metal-Complex Catalysts. Part 11. A Chemically Modified Platinum Electrode as a Bidentate Diamine Ligand for Forming Well-Defined, Immobilized Bis(η1-P-ether-phosphane)(diamine)ruthenium(II) Complexes; DOI: https://doi.org/10.1002/anie.200353399; Erratum: Angew. Chem., 116, 2934 (2004); DOI: https://doi.org/10.1002/ange.200490067.
  102. B. Schetter und B. Speiser*, J. Organomet. Chem., 689, 1472 - 1480 (2004); Reaction of Ferrocenecarboxylic Acid With N,N′-Disubstituted Carbodiimides: Synthesis, Spectroscopic and X-ray Crystallographic Analysis of N,N′-Disubstituted N-Ferrocenoylureas and Identification of a One-Pot Coupling Reagent for the Formation of Ferrocenecarboxamides in a Non-Aqueous Solvent; DOI: https://doi.org/10.1016/j.jorganchem.2003.12.045; Erratum: J. Organomet. Chem., 689, 2743 (2004); DOI: https://doi.org/10.1016/j.jorganchem.2004.05.002.
  103. K. Ludwig, L. Rajendran und B. Speiser*, J. Electroanal. Chem., 568, 203 - 214 (2004); EChem++ - An Object Oriented Problem Solving Environment for Electrochemistry. Part 1. A C++ Class Collection for Electrochemical Excitation Functions; DOI: https://doi.org/10.1016/j.jelechem.2004.01.024; Erratum: J. Electroanal. Chem., 571, 119 (2004); DOI: https://doi.org/10.1016/j.jelechem.2004.06.013.
  104. K. Ludwig und B. Speiser*, J. Chem. Inf. Comput. Sci., 44, 2051 - 2060 (2004); EChem++ - An Object-Oriented Problem Solving Environment for Electrochemistry. 2. The Kinetic Facilities of Ecco - A Compiler for (Electro-)Chemistry; DOI: https://doi.org/10.1021/ci0497814; Erratum: J. Chem. Inf. Comput. Sci., 46, 2762 (2006); DOI: https://doi.org/10.1021/ci6003064.
  105. W. Märkle, B. Speiser*, C. Tittel und M. Vollmer, Electrochim. Acta, 50, 2753 - 2762 (2005); Combinatorial Micro Electrochemistry. Part 1. Automated Micro Electrosynthesis of Iminoquinol Ether and [1,2,4]Triazolo[4,3-a]pyridinium Perchlorate Collections in the Wells of Microtiter Plates; DOI: https://doi.org/10.1016/j.electacta.2004.11.020.
  106. T. Erichsen, S. Reiter, V. Ryabova, E.M. Bonsen, W. Schuhmann*, W. Märkle, C. Tittel, G. Jung, und B. Speiser, Rev. Sci. Instrum., 76, 062204-1 - 062204-11 (2005); Combinatorial Micro Electrochemistry: Development and Evaluation of an Electrochemical Robotic System; DOI: https://doi.org/10.1063/1.1906106.
  107. W. Märkle und B. Speiser*, Electrochim. Acta, 50, 4916 - 4925 (2005); Combinatorial Microelectrochemistry. Part 3. On-line Monitoring of Electrolyses by Steady-State Cyclic Voltammetry at Microelectrodes; DOI: https://doi.org/10.1016/j.electacta.2005.01.052.
  108. E. Lindner, Z.-L. Lu, H.A. Mayer, B. Speiser*, C. Tittel und I. Warad, Electrochem. Commun., 7, 1013 - 1020 (2005); Combinatorial Micro Electrochemistry. Part 4. Cyclic Voltammetric Redox Screening of Homogeneous Ruthenium(II) Hydrogenation Catalysts (gleichzeitig: Electrochemistry of Transition Metal Complexes, Part 12); DOI: https://doi.org/10.1016/j.elecom.2005.07.002.
  109. E.P. Sapozhnikova, M. Bogdan, B. Speiser*, und W. Rosenstiel, J. Electroanal. Chem., 588, 15 - 26 (2006); EChem++ - An Object-Oriented Problem Solving Environment for Electrochemistry. Part 3. Classification of Voltammetric Signals by the Fuzzy ARTMAP Neural Network with Respect to Reaction Mechanisms; DOI: https://doi.org/10.1016/j.jelechem.2005.11.032.
  110. K. Ludwig und B. Speiser*, J. Electroanal. Chem., 588, 74 - 87 (2006); EChem++ - An Object Oriented Problem Solving Environment for Electrochemistry: Part 4. Adaptive Multilevel Finite Elements Applied to Electrochemical Models. Algorithm and Benchmark Calculations; DOI: https://doi.org/10.1016/j.jelechem.2005.12.003.
  111. S. Eisele, M. Schwarz, B. Speiser* und C. Tittel, Electrochim. Acta, 51, 5304 - 5306 (2006); Diffusion Coefficient of Ferrocene in 1-Butyl-3-methylimidazolium Tetrafluoroborate - Concentration Dependence and Solvent Purity; DOI: https://doi.org/10.1016/j.electacta.2006.02.001.
  112. A. Budny, F. Novak, N. Plumeré, B. Schetter, B. Speiser*, D. Straub, H.A. Mayer und M. Reginek, Langmuir, 22, 10605 - 10611 (2006); Redox-Active Silica Nanoparticles. Part 1. Electrochemistry and Catalytic Activity of Spherical, Nonporous Silica Particles with Nanometric Diameters and Covalently Bound Redox-active Modifications (gleichzeitig: Electrochemistry of Transition Metal Complexes, Part 13); DOI: https://doi.org/10.1021/la061107o.
  113. K. Ludwig und B. Speiser*, J. Electroanal. Chem., 608, 91 - 101 (2007); EChem++ - An Object Oriented Problem Solving Environment for Electrochemistry. Part 5. A Differential-Algebraic Approach to the Error Control of Adaptive Algorithms; DOI: https://doi.org/10.1016/j.jelechem.2007.05.005.
  114. K. Ludwig, I. Morales und B. Speiser*, J. Electroanal. Chem., 608, 102 - 110 (2007); EChem++ - An Object Oriented Problem Solving Environment for Electrochemistry. Part 6. Adaptive Finite Element Simulations of Controlled-Current Electrochemical Experiments; DOI https://doi.org/10.1016/j.jelechem.2007.05.014.
  115. N. Plumeré und B. Speiser*, Electrochim. Acta, 53, 1244 - 1251 (2007); Redox-Active Silica Nanoparticles. Part 2. Photochemical Hydrosilylation on a Hydride Modified Silica Particle Surface for the Covalent Immobilization of Ferrocene; DOI: https://doi.org/10.1016/j.electacta.2007.01.020.
  116. N. Plumeré, B. Speiser*, H. A. Mayer, D. Joosten, and L. Wesemann, Chem. Eur. J., 15, 936 - 946 (2009). Redox-Active Silica Nanoparticles, Part 3. High-Temperature Chlorination-Reduction Sequence for the Preparation of Silicon Hydride Modified Silica Surfaces; DOI:  https://doi.org/10.1002/chem.200801213.
  117. M. Schwarz und B. Speiser*, Electrochim. Acta, 54, 3735 - 3744 (2009); Combinatorial Micro-Electrochemistry. Part 5. Electrosynthesis Screening of the Electroreductive Coupling of α,β-Unsaturated Esters and Allyl Bromides in a Room Temperature Ionic Liquid; DOI: https://doi.org/10.1016/j.electacta.2009.01.078.
  118. N. Plumeré, B. Speiser*, B. Dietrich, K. Albert, J.J. Pesek* und M.T. Matyska, Langmuir, 25, 13481 - 13487 (2009); Thermally Induced Radical Hydrosilylation for Synthesis of C18 HPLC Phases from Highly Condensed Si-H Terminated Silica Surfaces; DOI: https://doi.org/10.1021/la901986w.
  119. F. Novak, N. Plumeré, B. Schetter, B. Speiser*, D. Straub, H.A. Mayer, M. Reginek, K. Albert, G. Fischer, C. Meyer, H.-J. Egelhaaf and B. Børresen, J. Solid State Electrochem., 14, 289 - 303 (2010); Redox-active Silica Nanoparticles. Part 4. Synthesis, Size Distribution, and Electrochemical Adsorption Behavior of Ferrocene- and (Diamine)(diphosphine)-ruthenium(II)-modified Stöber Silica Colloidal Particles; DOI: https://doi.org/10.1007/s10008-009-0811-8.
  120. J. Janisch, A. Ruff, B. Speiser*, C. Wolff, J. Zigelli, S. Benthin, V. Feldmann und H.A. Mayer, J. Solid State Electrochem., 15, 2083 - 2094 (2011); Consistent Diffusion Coefficients of Ferrocene in some Non-Aqueous Solvents: Electrochemical Simultaneous Determination together with Electrode Sizes and Comparison to Pulse Gradient Spin Echo NMR Results; DOI: https://doi.org/10.1007/s10008-011-1399-3.
  121. N. Plumeré, A. Ruff, B. Speiser*, V. Feldmann und H.A. Mayer, J. Colloid Interface Sci., 368, 208 - 219 (2012); Redox-active Silica Nanoparticles. Part 5. Stöber Silica Particles as Basis for Redox-active Modifications - Particle Shape, Size, Polydispersity and Porosity; DOI: https://doi.org/10.1016/j.jcis.2011.10.070.
  122. J. Schäfer, M. Scheurer, B. Speiser, W. Kuźnik* und I.V. Kityk, Spectrochim. Acta A, 95, 193 - 98 (2012); Electrochemistry and DFT Simulation of Optical Spectra for N-Ferrocenoyl-N ′-ω-decenoyl-ethylenediamine; DOI: http://dx.doi.org/10.1016/j.saa.2012.04.039.
  123. S. Benthin und B. Speiser*, J. Electroanal. Chem., 682, 147 - 157 (2012); EChem++ - An Object Oriented Problem Solving Environment for Electrochemistry. Part 7: Simulation of Equilibrium Electron Transfer Processes with Implicit Dirichlet Boundary Conditions; DOI: http://dx.doi.org/10.1016/j.jelechem.2012.07.024.
  124. S. Biswas, M. Müller, C. Tönshoff, K. Eichele, C. Maichle-Mössmer, A. Ruff, B. Speiser und H.F. Bettinger*, Eur. J. Org. Chem., 4634 - 4639 (2012); The Overcrowded Borazine Derivative of Hexabenzotriphenylene via Dehydrohalogenation; DOI: https://doi.org/10.1002/ejoc.201200322.
  125. V. Gierz, A. Seyboldt, C. Maichle-Mössmer, K.W. Törnroos, M.T. Speidel, B. Speiser, K. Eichele und D. Kunz*, Organometallics, 31, 7893 - 7901 (2012); Dinuclear Coinage-Metal Complexes of Bis(NHC) Ligands: Structural Features and Dynamic Behavior of a Cu-Cu Complex; DOI: https://doi.org/10.1021/om300544g.
  126. A. Ruff, P. Schuler und B. Speiser*, J. Solid State Electrochem., 17, 79 - 97 (2013); Redox-active Silica Nanoparticles. Part 6. Synthesis and Spectroscopic and Electrochemical Characterization of Viologen-Modified Stöber Silica Particles with Diameters of approximately 125 nm; DOI: https://doi.org/10.1007/s10008-012-1834-0. Erratum: A. Ruff, P. Schuler und B. Speiser, J. Solid State Electrochem., 17, 1787 (2013); DOI: https://doi.org/10.1007/s10008-013-2058-7.
  127. R. Bula, M. Fingerle, A. Ruff, B. Speiser, C. Maichle-Mössmer und H.F. Bettinger*, Angew. Chem., 125, 11861 - 11864 (2013); Anti-[2.2](1,4)pentacenophan, ein kovalent verknüpftes Pentacendimer; DOI: https://doi.org/10.1002/ange.201303649; Angew. Chem. Int. Ed., 52, 11647 - 11650 (2013); Anti-[2.2](1,4)pentacenophane: A Covalently Coupled Pentacene Dimer; DOI: https://doi.org/10.1002/anie.201303649.
  128. J. Janisch, R. Klinkhammer, A. Ruff, J. Schäfer, B. Speiser* und C. Wolff, Electrochim. Acta, 110, 608 - 618 (2013); Proving the Electron Stoichiometry for the Electrochemical Two-Electron Oxidation of N,N ′-Bis(ferrocenoyl)-1,2-diaminoethane; DOI: https://doi.org/10.1016/j.electacta.2013.05.036.
  129. A. Ruff, B. Speiser und I. Dreiling, J. Electroanal. Chem., 710, 10 - 16 (2013); Redox-active Silica Nanoparticles. Part 7. Redox Behavior of Core/Shell Structured Viologen Modified Silica Particles Immobilized at Paraffin Impregnated Graphite Electrodes; DOI: http://dx.doi.org/10.1016/j.jelechem.2012.11.034.
  130. N.A. Samoylova, N.M. Belov, V.A. Brotsman, I.N. Ioffe, N.S. Lukonina, V.Yu. Markov, A. Ruff, A.V. Rybalchenko, P. Schuler, O.O. Semivrazhskaya, B. Speiser, S.I. Troyanov, T.V. Magdesieva*, und A.A. Goryunkov*, Chem. Eur. J., 19, 17969 - 17979 (2013); [6,6]-Open and [6,6]-closed Isomers of C70(CF2): Synthesis, Electrochemical and Quantum Chemical Investigation; DOI: https://doi.org/10.1002/chem.201302946.
  131. M. Passon, A. Ruff, P. Schuler, B. Speiser* und I. Dreiling, ChemElectroChem, 1, 263 - 280 (2014); Redox-active Silica Nanoparticles: Part 8. Stepwise solid-phase synthesis and solid state electrochemistry of redox active viologen core/shell structured modified silica materials; DOI: https://doi.org/10.1002/celc.201300123.
  132. M. Bogdan, D. Brugger, W. Rosenstiel und B. Speiser*, J. Cheminformatics, 6, 30-1 - 30-12 (2014); Chemical Information from Electrochemical Data. Part 3. Estimation of Diffusion Coefficients from Voltammetric Signals by Support Vector and Gaussian Process Regression; DOI: https://doi.org/10.1186/1758-2946-6-30.
  133. D.R. Abad, J. Henig, H.A. Mayer*, T. Reißig und B. Speiser*, Organometallics, 33, 4777 - 4783 (2014); Redox-Active Silica Nanoparticles. Part 9. Synthesis, Electrochemistry and Diffusion Properties of Caged Octakis(N-ferrocenoyl-3-aminopropyl)silsesquioxane; DOI: https://doi.org/10.1021/om5000419.
  134. M. Passon, A. Ruff, P. Schuler, B. Speiser* und W. Leis, J. Solid State Electrochem., 19, 85 - 101 (2015); Two-electron-transfer Redox Systems. Part 9. Redox Behavior of Some Asymmetrically Substituted Viologens and an Alkyl Bridged Bis-viologen in Non-aqueous Solvents: a Voltammetric and Spectroscopic Investigation; DOI: https://doi.org/10.1007/s10008-014-2629-2.
  135. A.V. Rybalchenko,T.V. Magdesieva*, V.A. Brotsman, N.M. Belov, V.Yu. Markov, I.N. Ioffe, A. Ruff, P. Schuler, B. Speiser, J. Heinze, L.N. Sidorov und A.A. Goryunkov*, Electrochim. Acta., 174, 143 - 154 (2015); The First Representative of a New Family of the Bridgehead-modified Difluoromethylenated Homofullerenes: Electrochemical Properties and Synthetic Availability; DOI: https://doi.org/10.1016/j.electacta.2015.05.117.
  136. A. Schank, B. Speiser* und A. Stickel, J. Electroanal. Chem., 779, 137 - 145 (2016); Electrochemistry of Transition Metal Complex Catalysts, Part 14. Oxidation Electron Stoichiometry, Diffusion Coefficients and Formal Potentials of Two Di-nickel-bis(salen) Complexes (gleichzeitig: Two-Electron-Transfer Redox Systems, Part 10); DOI: http://dx.doi.org/10.1016/j.jelechem.2016.04.006.
  137. H.F. Bettinger*, R. Einholz, A. Göttler, M. Junge, M.-S. Sättele, A. Schnepf, C. Schrenk, S. Schundelmeier und B. Speiser, Org. Chem. Front., 4, 853 - 860 (2017); 6,6′,11,11′-Tetra((triisopropylsilyl)ethynyl)anti-[2.2](1,4)tetracenophane: A Covalently Coupled Tetracene Dimer and its Structural, Electrochemical, and Photophysical Characterization; DOI: https://doi.org/10.1039/c7qo00117g.
  138. S. Schundelmeier, B. Speiser*, H.F. Bettinger und R. Einholz, ChemPhysChem, 18, 2266 - 2278 (2017); Molecular Electrochemistry of Acenes. Part 1. (Electro)chemical Oxidation of 6,13-Bis(tri(isopropyl)silylethynyl)pentacene to its Radical Cation and Dication; DOI: https://doi.org/10.1002/cphc.201700435; Erratum: S. Schundelmeier, B. Speiser, H.F. Bettinger und R. Einholz, ChemPhysChem, 18, 3083 (2017); DOI: https://doi.org/10.1002/cphc.201701008.
  139. M. Fingerle, C. Maichle-Mössmer, S. Schundelmeier, B. Speiser und H.F. Bettinger*, Org. Lett., 19, 4428 - 4431 (2017); Synthesis and Characterization of a BNB Zigzag-Edged Benzo[fg]tetracene Motif; DOI: https://doi.org/10.1021/acs.orglett.7b01873.
  140. F. Koch, A. Berkefeld*, B. Speiser und H. Schubert, Chem. Eur. J., 23, 16681 - 16690 (2017); Mechanistic Aspects of Redox-Induced Assembly and Disassembly of S-Bridged [2M-2S] Structures; DOI: https://doi.org/10.1002/chem.201704599.
  141. A.-D. Fuhrmann, A. Seyboldt, A. Schank, G. Zitzer, B. Speiser, D. Enseling, T. Jüstel und H.-J. Meyer*, Eur. J. Inorg. Chem., 2017, 4259 - 4266; Luminescence Quenching of Ligand-Substituted Molybdenum and Tungsten Halide Clusters by Oxygen and Their Oxidation Electrochemistry; DOI: https://doi.org/10.1002/ejic.201700763.
  142. B. Shen, T. Geiger, R. Einholz, F. Reicherter, S. Schundelmeier, C. Maichle-Mössmer, B. Speiser und H.F. Bettinger*, J. Org. Chem., 83, 3149 - 3168 (2018); Bridging the Gap between Pentacene and Perfluoropentacene: Synthesis and Characterization of 2,3,9,10-Tetrafluoropentacene in the Neutral, Cationic and Dicationic State; DOI: https://doi.org/10.1021/acs.joc.7b03241.
  143. T. Geiger, S. Schundelmeier, T. Hummel, M. Ströbele, W. Leis, M. Seitz, C. Zeiser, L. Moretti, M. Maiuri, G. Cerullo, K. Broch, J. Vahland, K. Leo, C. Maichel-Mössmer, B. Speiser und H.F. Bettinger*, Chem. Eur. J., 26, 3420 - 3434 (2020); Modulating the Electronic and Solid-State Structure of Organic Semiconductors by Site-Specific Substitution: The Case of Tetrafluoropentacenes; DOI: https://doi.org/10.1002/chem.201905843.
  144. F. Mazzotta, G. Zitzer, B. Speiser und D. Kunz*, Chem. Eur. J., 26, 16291 - 16305 (2020); Electron-deficient Imidazolium Substituted Cp Ligands and their Ru Complexes; DOI: https://doi.org/10.1002/chem.202002801; cover art: https://doi.org/10.1002/chem.202004448.
  145. L. Hirneise, J. Langmann, G. Zitzer, L. Ude, C. Maichle-Mössmer, W. Scherer*, B. Speiser* und R. Anwander*, Organometallics, 40, 1786 - 1800 (2021); Tuning Organocerium Electrochemical Potentials by Extending Tris(cyclopentadienyl) Scaffolds with Terminal Halogenido, Siloxy, and Alkoxy Ligands; DOI: https://doi.org/10.1021/acs.organomet.1c00276.
  146. B. Speiser* und G. Zitzer, ChemElectroChem, 8, 2888 - 2902 (2021); Interactions Between Two Cobalt Salen Centers Bridged by Non-Conjugated Linkers; DOI: https://doi.org/10.1002/celc.202100709.
  147. M.R. Rapp, W. Leis, F. Zinna, L. Di Bari, T. Arnold, B. Speiser, M. Seitz, H. Bettinger*, Chem. Eur. J., 28, e202104161-1 - e202104161-9 (2022); Bright Luminescence by Combining Chiral [2.2]Paracyclophane with a Boron-Nitrogen-Doped Polyaromatic Hydrocarbon Building Block; DOI: https://doi.org/10.1002/chem.202104161.
  148. S. Schundelmeier, C. Tönshoff, A. Göttler, R. Einholz, H. Schubert, H.F. Bettinger und B. Speiser, J. Org. Chem., 88, 1364 - 1377 (2023); Limited Stability of 6,13-Bis(tri(isopropyl)silylethynyl)pentacene Upon One-Electron Oxidation: Electrochemically Induced (4+2) Cycloaddition Between an Alkynyl-Substituted Acene and Its Radical Cation; DOI: https://doi.org/10.1021/acs.joc.2c02149.
Bücher und Buchkapitel
  1. B. Speiser, Elektroanalytische Methoden, in K.E. Geckeler und H. Eckstein (Hrsg.), Bioanalytische und biochemische Labormethoden, Vieweg, Braunschweig/Wiesbaden, 1998, S. 301 - 370, ISBN: 978-3-642-58820-4; DOI: https://doi.org/10.1007/978-3-642-58820-4_4.
  2. B. Speiser, in A.J. Bard und M. Stratmann (Hrsg.), Encyclopedia of Electrochemistry, Vol. 3, Instrumentation and Electroanalytical Chemistry (Bandherausgeber: P. Unwin), Kapitel 2.1: Linear Sweep and Cyclic Voltammetry, Wiley-VCH, Weinheim, 2003, S. 81 - 104; ISBN: 9783527302505 (print), 9783527610426 (online); DOI: https://doi.org/10.1002/9783527610426.bard030201.
  3. B. Speiser, in R. Gleiter und H. Hopf (Hrsg.), Modern Cyclophane Chemistry, Wiley-VCH, Weinheim, 2004, Kapitel 14, Molecular Electrochemistry of Cyclophanes, S. 359 - 379; ISBN: 9783527307135 (print), 9783527603961 (online); DOI: https://doi.org/10.1002/3527603964.ch14.
  4. B. Speiser, in A.J. Bard und M. Stratmann (Hrsg.), Encyclopedia of Electrochemistry, Vol. 8, Organic Electrochemistry (Bandherausgeber: H.J. Schäfer), Kapitel 1: Methods to Investigate Mechanisms of Electroorganic Reactions, Wiley-VCH, Weinheim, 2004, S. 1 - 23; ISBN: 9783527302505 (print), 9783527610426 (online); DOI: https://doi.org/10.1002/9783527610426.bard080001.
  5. H.A.Y. Mohammad, J.C. Grimm, K. Eichele, H.-G. Mack, B. Speiser, F. Novak, W.C. Kaska und H. A. Mayer, Double Cyclometalation: Implications for C-H Oxidative Addition With PCP Pincer Compounds of Iridium, in K.I. Goldberg und A.S. Goldman (Eds.), "Activation and Functionalization of C-H Bonds", ACS Symposium Series, American Chemical Society, No. 885, Kapitel 14, S. 234 - 247 (2004), ISBN: 978-0841238497; DOI: https://doi.org/10.1021/bk-2004-0885.ch014.
  6. B. Speiser, in G. Kreysa, K.-i. Ota und R.F. Savinell (Hrsg.), Encyclopedia of Applied Electrochemistry, Numerical Simulations in Electrochemistry, Springer, New York, 2014, 1380 - 1385; ISBN: 978-1-4419-6995-8 (print) 978-1-4419-6996-5 (online); DOI: https://doi.org/10.1007/978-1-4419-6996-5_34.
  7. O. Hammerich und B. Speiser (Hrsg.), Organic Electrochemistry: Revised and Expanded, 5. Auflage, Taylor & Francis, Boca Raton, 2016; ISBN: 978-1-4200-8401-6 (print), 978-0-4291-4187-4 (online); DOI: https://doi.org/10.1201/b19122.
  8. O. Hammerich und B. Speiser, in O. Hammerich und B. Speiser (Hrsg.), Organic Electrochemistry: Revised and Expanded, Kapitel 2, Techniques for Studies of Electrochemical Reactions in Solution; 5. Auflage, Taylor & Francis, Boca Raton, 2016, S. 97 - 168; DOI: https://doi.org/10.1201/b19122.
  9. B. Speiser, in O. Hammerich und B. Speiser (Hrsg.), Organic Electrochemistry: Revised and Expanded, Kapitel 5, The Application of Digital Simulation, 5. Auflage, Taylor & Francis, Boca Raton, 2016, S. 205 - 227; DOI: https://doi.org/10.1201/b19122.
  10. J. Jörissen und B. Speiser, in O. Hammerich und B. Speiser (Hrsg.), Organic Electrochemistry: Revised and Expanded, Kapitel 7, Preparative Electrolysis on the Laboratory Scale, 5. Auflage, Taylor & Francis, Boca Raton, 2016, S. 263 - 330; DOI: https://doi.org/10.1201/b19122.
  11. B. Speiser, in G. Wittstock, Lehrbuch der Elektrochemie. Grundlagen, Methoden, Materialien, Anwendungen, Wiley-VCH, Weinheim, 2023; ISBN: 978-3-527-32784-3; Kapitel 6, "Aufklärung elektrochemischer Reaktionsmechanismen in flüssigen Elektrolyten", Abschnitte 6.1 - 6.6.2.
Buchbesprechungen und Rezensionen
  1. B. Speiser, Angew. Chem., 105, 1273 - 1274 (1993); DOI: https://doi.org/10.1002/ange.19931050851; Angew. Chem. Int. Ed. Engl. Engl. 32, 1218 - 1219 (1993); DOI: https://doi.org/10.1002/anie.199312181; "Electron and Proton Transfer in Chemistry and Biology", herausgegeben von A. Müller, H. Ratajczak, W. Junge und E. Diemann.
  2. B. Speiser, J. Electroanal. Chem., 374, 280 - 282 (1994); DOI: https://doi.org/10.1016/0022-0728(94)87045-4; "Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanisms", von D.K. Gosser Jr.
  3. B. Speiser, Angew. Chem., 108, 853 - 854 (1996); DOI: https://doi.org/10.1002/ange.19961080733, Angew. Chem. Int. Ed. Engl., 35, 913 - 914 (1996); DOI: https://doi.org/10.1002/anie.199609131; "Electrochromism. Fundamentals and Applications", von P.M.S. Monk, R.J. Mortimer und D.R. Rosseinsky.
  4. B. Speiser, Angew. Chem., 109, 2635 - 2636 (1997); DOI: https://doi.org/10.1002/ange.19971092241; Angew. Chem. Int. Ed. Engl., 36, 1910 - 1911 (1997); DOI: https://doi.org/10.1002/anie.199719102; "Grundlagen der Elektrochemie", von W. Schmickler.
  5. B. Speiser, Angew. Chem., 111, 1396 - 1397 (1999); "Leitfaden der Elektrochemie", von R. Holze.
  6. B. Speiser, Angew. Chem., 114, 1299 - 1300 (2002); DOI: https://doi.org/10.1002/1521-3757(20020402)114:7<1299::AID-ANGE1299>3.0.CO;2-8; Angew. Chem. Int. Ed. 41, 1247 - 1248 (2002); DOI: https://doi.org/10.1002/1521-3773(20020402)41:7<1247::AID-ANIE1247>3.0.CO;2-D; "Electrochemical Reactions and Mechanisms in Organic Chemistry", von J. Grimshaw.
  7. B. Speiser, Angew. Chem., 114, 3652 - 3653 (2002); DOI: https://doi.org/10.1002/1521-3757(20020916)114:18<3652::AID-ANGE3652>3.0.CO;2-H; Angew. Chem. Int. Ed., 41, 3501 - 3502 (2002); DOI: https://doi.org/10.1002/1521-3773(20020916)41:18<3501::AID-ANIE3501>3.0.CO;2-6 "Electrochemistry in Nonaqueous Solvents", von K. Izutsu.
  8. B. Speiser, Nachr. Chem., 51, 53 - 54 (2003); DOI: https://doi.org/10.1002/nadc.20030510127.; "Electrochemical Methods. Guide to Experiments and Applications.", herausgegeben von F. Scholz und "Praxis der elektrochemischen Messtechnik. Grundlagen, Schalttechnik, Experimente.", von H.-J. Haase.
  9. B. Speiser, Anal. Bioanal. Chem., 389, 1657 - 1658 (2007), DOI: https://doi.org/10.1007/s00216-007-1581-8. "Encyclopedia of Electrochemistry, Volume 10: Modified Electrodes", von I. Rubinstein, M. Fujihira und J.F. Rusling (Hrsg.).
  10. B. Speiser, Nachr. Chem., 57, 167 - 168 (2009); DOI: https://doi.org/10.1002/nadc.200962412; "Spectroelectrochemistry", von W. Kaim und A. Klein (Hrsg.).
Publikationen in Tagungsbänden ohne ISBN2
  1. B. Speiser, Beiträge zur Klausurtagung der Materialforschungsprojekte MFI 4 und 5 der Universitäten Tübingen und Stuttgart, Tübingen, 1990; Elektroanalytische Simulationen. 12. Theoretische Analyse von katalytischen Elektrodenreaktionen an amperometrischen Biosensoren.
  2. A. Rieker, J. Bracht, P. Hertl und B. Speiser, Abstracts of the 23rd Symposium on Oxidation Processes (Ed.: The Society of Synthetic Organic Chemistry und The Chemical Society of Japan), 1990, S. 227 - 232; Some Aspects of the Anodic Oxidation of Sterically Hindered Anilines and Phenols.
  3. E. Eichhorn, A. Rieker, B. Speiser und H. Stahl, Proc. 67th Annual Meeting of The Chemical Society of Japan, 1994, S. 184 - 185; Schiff-Base Co-Complexes. Electron-Transfer and Ligand-Exchange.
in Chem. Abs. referierte "Reports"
  1. B. Speiser und S. Pons, Report TR-8, Order-No. AD-A118708; Chem. Abs. 98, 62065g (1983); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 1. Two-dimensional Collocation and Theory for Chronoamperometry.
  2. B. Speiser und S. Pons, Report TR-9, Order-No. AD-A118709; Chem. Abs. 98, 62063e (1983); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part II. The Theory for Cyclic Voltammetry by Collocation.
  3. B. Speiser, A. Rieker und S. Pons, Report, TR-11, Order-No. AD-118711; Chem. Abs. 98, 62062d (1983); Electroanalytical Investigations. - IV. Use of Orthogonal Collocation for the Simulation of Quasireversible Electrode Processes under Potential Scan Conditions.
  4. S. Pons, B. Speiser und J.F. McAleer, Report TR-12, Order-No. AD-A118712; Chem. Abs. 98, 61975s (1983); Orthogonal Collocation Simulation of the Rotating Disk Electrode.
  5. B. Speiser und S. Pons, Report TR-14, Order-No.  AD-A118710; Chem. Abs. 98, 62064f (1983); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part III. Application to Chronoamperometric Experiments.
  6. J.F. Cassidy, S. Pons, A.S. Hinman und B. Speiser, Report TR-23, Order-No. AD-A136988; Chem. Abs. 101, 13949v (1984); Simulation of Edge Effects in Electroanalytical Experiments by Orthogonal Collocation. Part 4. Application to Voltammetric Experiments.
Sonstiges
  1. B. Speiser, Forum Appl. Res. Publ. Policy, 8 (1), 128 - 129; Cold Fusion: Continue Basic Research, without Pressure (ISSN: 0887-8218).
  2. B. Speiser, Molekulare Elektrochemie - Moderne Entwicklungen zum detaillierten Studium von Redoxreaktionen an molekularen Systemen, in Aktuelle Wochenschau 2006; Aktuelles aus der Elektrochemie und zum Thema Energie, Gesellschaft Deutscher Chemiker, Fachgruppe Angewandte Elektrochemie (Reihe HighChem hautnah), 2007, Abschnitt 7.5, S. 99 - 100.

Footnotes:

1Bei mehreren Autoren ist der jeweilige Korrespondenzautor mit * gekennzeichnet, soweit ein solcher ausgewiesen ist. Soweit möglich sind Verweise auf den digitalen Objektbezeichner (digital object identifier) angegeben.
2Kurzabstracts für Tagungsbeiträge sind nicht aufgeführt.


File translated from TEX by TTH, version 4.15.
On 16 Jun 2023, 18:06.