To Invert or Not To Invert – Reasons for the Occurrence of Normal and Inverted Formal Potentials in Molecular Multi-Electron Transfer Systems

Bernd Speiser

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D–72076 Tübingen, Germany

bernd.speiser@uni-tuebingen.de

Multi-Electron Transfers: Examples

basic research:

thermodynamics and kinetics

mechanisms

natural processes:

redox enzymes

photosynthesis

nitrogen fixation (nitrogenase and model systems)

technical applications:

catalysis

fuel cells

Two-Electron Transfers and Dis/Comproportionation

$$A^{0} \rightleftharpoons A^{1+/-} \rightleftharpoons A^{2+/-}$$

$$E_{1}^{0} \downarrow E_{2}^{0} \downarrow$$

$$P \qquad P'$$

disproportionation/comproportionation:

$$2 A^{1+/-} = A^{0} + A^{2+/-}$$

$$K_{\text{disp}} = \frac{[A^{0}][A^{2+/-}]}{[A^{1+/-}]^{2}} = \exp\left[-\frac{F}{RT}|\Delta E^{0}|\right]$$

$$|\Delta E^{0}| = \begin{cases} E_{2}^{0} - E_{1}^{0} & \text{for oxidation} \\ -(E_{2}^{0} - E_{1}^{0}) & \text{for reduction} \end{cases}$$

Normal and Inverted Potential Ordering

- \checkmark solvation effects \rightarrow several 100 mV
- 2nd electron transfer more difficult: normal potential ordering
- \blacksquare \longrightarrow equilibrium on side of A^{1+/-}
- $\longrightarrow A^{1+/-}$ stable against disproportionation

Normal and Inverted Potential Ordering

 \checkmark solvation effects \rightarrow several 100 mV

2nd electron transfer more difficult: normal potential ordering

 \blacksquare \longrightarrow equilibrium on side of A^{1+/-}

 \square \longrightarrow $A^{1+/-}$ stable against disproportionation

 \longrightarrow 2nd electron transfer more easy: inverted potential ordering (Evans)

- \blacksquare \longrightarrow equilibrium on side of A⁰ and A^{2+/-}
- $\longrightarrow A^{1+/-}$ unstable against disproportionation
- structural changes during electron transfer?

Normal and Inverted Potential Ordering

 \checkmark solvation effects \longrightarrow several 100 mV

2nd electron transfer more difficult: normal potential ordering

 \blacksquare \longrightarrow equilibrium on side of A^{1+/-}

 $\longrightarrow A^{1+/-}$ stable against disproportionation

 \frown 2nd electron transfer more easy: inverted potential ordering (Evans)

- \blacksquare \longrightarrow equilibrium on side of A⁰ and A^{2+/-}
- $\longrightarrow A^{1+/-}$ unstable against disproportionation
 - structural changes during electron transfer?

"a many-facetted mechanism" (Heinze) cyclic voltammetry as analytical technique

Multi-Electron Transfer: Examples and Some Systematics

examples from

- organic (sterically hindered anilines, hexaaminobenzenes, hexathiobenzenes, meso-ionic dithiocarboxylates)
- organometallic (Ru(arene) complexes, fc-substituted silsesquioxanes)
- inorganic (boron subhalides)
- chemistry
- electrons are transferred to
 - \mathbf{I} single redox center (= 1 electroactive group)
 - complex redox center

(> 1 electroactive groups) { fully delocalized conjugated with some separation

 \square multiple redox centers (> 1 electroactive groups)

Multi-Electron Transfer: Examples and Some Systematics

examples from

- organic (sterically hindered anilines, hexaaminobenzenes, hexathiobenzenes, meso-ionic dithiocarboxylates)
- organometallic (Ru(arene) complexes, fc-substituted silsesquioxanes)
- inorganic (boron subhalides)
- chemistry
- electrons are transferred to
 - single redox center (= 1 electroactive group)
 - complex redox center

(> 1 electroactive groups) { fully delocalized conjugated with some separation

 \square multiple redox centers (> 1 electroactive groups)

An Octa-Ferrocenyl Silsesquioxane — Structure

cage compound

- cube as core structural element
- redox-active centers bound by Si-C linker

synthesis: D. Ruiz Abad and H.A. Mayer

An Octa-Ferrocenyl Silsesquioxane — Structure

cage compound

- cube as core structural element
- redox-active centers bound by Si-C linker

synthesis: D. Ruiz Abad and H.A. Mayer

model compound for redox-actively modified silica nanoparticles

DMSO/0.1 M NBu₄PF₆; Pt electrode

- two redox signals
- \checkmark follow-up reaction at small v

DMSO/0.1 M NBu₄PF₆; Pt electrode

- oxidation I: adsorbed species
- oxidation II: diffusing species

- oxidation I: adsorbed species
- oxidation II: diffusing species

oxidation II -

signal shape and $\Delta E_{\rm p}$: 1 e⁻ resulting *D* is much too large assumption: n = 8, similar E^0

 $\longrightarrow D \approx 1.1 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$ scales with molecular weight as compared to Fc

An Octa-Ferrocenyl Silsesquioxane — Multi-Electron Transfer

- eight electrons transferred independently
- equal (or at least very similar) formal potential
- example of separated, non-interacting redox centers

Ruthenium Complexes with Arene Ligands

 $CH_2CI_2/0.1 \text{ M NBu}_4PF_6$; GC electrode; circles: experiment, line: simulation $E_1^0 = -0.875 \text{ V}, E_2^0 = -1.060 \text{ V}, k_{s1} = 0.077 \text{ cm/s}, k_{s2} = 0.041 \text{ cm/s}$

Cyclic Voltammetry of Bis([22]**paracyclophane**)**Ru**(**II**) **in PC**

Cyclic Voltammetry of Bis([2₂]**paracyclophane**)**Ru**(**II**) – **Comparison**

	propylene carbonate	dichloromethan		
$E_{1}^{0} =$	-0.938 V	$-0.875 \; V$		
$E_{2}^{0} =$	-1.015 V	-1.060 V		
$k_{s1} =$	$0.018~{ m cm}~{ m s}^{-1}$	$0.077~\mathrm{cm}~\mathrm{s}^{-1}$		
$k_{s2} =$	$0.012~{ m cm}~{ m s}^{-1}$	$0.041~{ m cm~s^{-1}}$		

- "normal" potential ordering
- \square $|\Delta E^0|$ in CH_2Cl_2 larger than in PC \longrightarrow peak splitting
- 1st electron transfer faster than 2nd
- electron transfer in CH₂Cl₂ four times faster than in PC \longrightarrow effect of τ_L (Marcus theory)

solvent effect on kinetics and thermodynamics of electron transfers

Bis(η^6 -triphenylene)**Ru**(**II**)

Cyclic Voltammetry of Bis $(\eta^6$ **-triphenylene**)**Ru**(II) in PC

propylene carbonate/0.1 M NBu₄PF₆; GC electrode

Reduction Mechanism of Bis $(\eta^6$ **-triphenylene**)**Ru**(II) in PC

$$\begin{split} k_{\rm s}({\rm II}/{\rm I}) &= 0.019~{\rm cm~s^{-1}}\\ \alpha({\rm II}/{\rm I}) &= 0.5\\ k_{\rm s}({\rm I}/0) &= 0.002~{\rm cm~s^{-1}}\\ \alpha({\rm I}/0) &= 0.5\\ E^0({\rm II}/{\rm I}) &= -0.775~{\rm V}\\ E^0({\rm I}/0) &= -0.754~{\rm V}\\ K_{\rm disp} &= 2.195\\ k_{\rm f,disp} &= 2.26\times10^6~{\rm M^{-1}s^{-1}}\\ k_{\rm C} &= 840~{\rm M^{-1}s^{-1}} \end{split}$$

Two-Electron Reduction of Ru-Complexes in Comparison

differences:

- "inverted" potential ordering for triphenylene complex
- 2nd electron transfer slower for triphenylene complex by factor 10

Two-Electron Reduction of Ru-Complexes in Comparison

differences:

- "inverted" potential ordering for triphenylene complex
- 2nd electron transfer slower for triphenylene complex by factor 10

Two-Electron Reduction of Ru-Complexes in Comparison

differences:

- "inverted" potential ordering for triphenylene complex
- 2nd electron transfer slower for triphenylene complex by factor 10

structural distortion of aromatic rings in triphenylene complex more difficult

Imidazolium-2-dithiocarboxylates: Synthesis

 $R = CH_3$ $R = C_2H_5$ $R = i-C_3H_7$

synthesis from carbene and CS₂: N. Kuhn et al., Z. Naturf. 49b, 1473 – 1480 (1994)

Imidazolium-2-dithiocarboxylates: Chemical Reduction

reducing agent potassium:

N. Kuhn et al., J. Chem. Soc. Chem. Commun. 1997, 627 – 628

Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al., J. Chem. Soc. Chem. Commun. 1997, 627 – 628

dianion: N. Kuhn et al., Z. Naturf. *49b*, 1473 – 1480 (1994)

Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al., J. Chem. Soc. Chem. Commun. 1997, 627 – 628

e

electrochemical reduction?

dianion: N. Kuhn et al., Z. Naturf. *49b*, 1473 – 1480 (1994)

Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al., J. Chem. Soc. Chem. Commun. 1997, 627 – 628

dianion: N. Kuhn et al., Z. Naturf. *49b*, 1473 – 1480 (1994)

cyclic voltammetry as analytical technique

Cyclic Voltammetry of 1,3-Diisopropyldithiocarboxylate

THF/0.2 M NBu₄PF₆; GC electrode

To Invert or Not To Invert – Reasons for the Occurrence of Normal and Inverted Formal Potentials in Molecular Multi-Electron Transfer Systems – p.23/36

Imidazolium-2-dithiocarboxylates: Redox Potentials

Imidazolium-2-dithiocarboxylates: Redox Potentials

R	$k_{ m s1}$ /cm s $^{-1}$	$k_{ m s2}$ /cm s $^{-1}$	$k_{ m comp}/{\sf M}^{-1}{\sf s}^{-1}$	D / cm 2 s $^{-1}$	$k_{ m f}$ / s $^{-1}$
CH_3 C_2H_5	0.029 0.019	0.009 0.0075	$2.7 imes10^5$ 1.45 $ imes10^5$	1.0×10^{-5} 1.4×10^{-5} 1.2×10^{-5}	0.07 0.25
<i>I</i> -C ₃ H ₇	0.027	0.011	_	1.2 × 10 °	0.045

R	$k_{ m s1}$ /cm s $^{-1}$	$k_{ m s2}$ /cm s $^{-1}$	$k_{ m comp}/{ m M}^{-1}{ m s}^{-1}$	D / cm 2 s $^{-1}$	$k_{ m f}$ / s $^{-1}$
CH ₃ C ₂ H ₅ <i>i</i> -C ₃ H ₇	0.029 0.019 0.027	0.009 0.0075 0.011	$2.7 imes 10^5$ $1.45 imes 10^5$	$1.0 imes 10^{-5}$ $1.4 imes 10^{-5}$ $1.2 imes 10^{-5}$	0.07 0.25 0.045

R	$k_{ m s1}$ /cm s $^{-1}$	$k_{ m s2}$ /cm s $^{-1}$	$k_{ m comp}/{ m M}^{-1}{ m s}^{-1}$	D / cm 2 s $^{-1}$	$k_{ m f}$ / s $^{-1}$
CH ₃	0.029	0.009	$2.7 imes 10^5$	$1.0 imes 10^{-5}$	0.07
C ₂ H ₅	0.019	0.0075	1.45 $ imes 10^5$	$1.4 imes 10^{-5}$	0.25
<i>i</i> -C ₃ H ₇	0.027	0.011	—	$1.2 imes 10^{-5}$	0.045

Imidazolium-2-dithiocarboxylates: Structural Reorganisation

Imidazolium-2-dithiocarboxylates: Structural Reorganisation

substituents R hinder planarization

Hexakis(dimethylamino)benzene and its Dication: Structures

Hückel-aromatic compound; planar

two polymethine-units; twist

Hexakis(dimethylamino)benzene: Cyclic Voltammetry

Boron Subhalides: Cluster Structures

X = CI, Br, I

dianions: closo structure according to Wade's rules

neutral molecules: hypercloso cluster with electron deficit

Boron Subhalides: Cyclic Voltammetry of $B_8X_8^{\bullet-}$ **and** $B_9X_9^{\bullet-}$

CH₂Cl₂/0.1 M NBu₄PF₆; Pt electrode

Boron Subhalides: Cyclic Voltammetry of $B_8X_8^{\bullet-}$ **and** $B_9X_9^{\bullet-}$

CH₂Cl₂/0.1 M NBu₄PF₆; Pt electrode

normal potential ordering; no dramatic structural changes

Boron Subhalides: Cyclic Voltammetry of $B_8X_8^{\bullet-}$ **and** $B_9X_9^{\bullet-}$

CH₂Cl₂/0.1 M NBu₄PF₆; Pt electrode

 π -back bonding compensates electron deficit in hypercloso clusters

Sterically Hindered Biphenylamines: Structure and Cyclic Voltammograms

B. Speiser, A. Rieker, and S. Pons, J. Electroanal. Chem. 147, 205 – 222 (1983).

 $CH_3CN/0.1$ M NEt₄ClO₄; Pt electrode; potentials vs. Ag/Ag⁺ (0.01 M in CH₃CN)

Sterically Hindered Biphenylamines: Two-Electron Oxidation Mechanism

Hammett correlation with σ^+ substituent constants

stabilization of radical cation by planarization – normal potential ordering

Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

- each case to be analyzed carefully
- ensemble of voltammograms
- simulation, parameter fitting
- thermodynamics and kinetics
- various examples for normal and inverted potential ordering
 - structural change
 - solvation, ion pairing

Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

- each case to be analyzed carefully
- ensemble of voltammograms
- simulation, parameter fitting
- thermodynamics and kinetics
- various examples for normal and inverted potential ordering
 - structural change
 - solvation, ion pairing

Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

- each case to be analyzed carefully
- ensemble of voltammograms
- simulation, parameter fitting
- thermodynamics and kinetics
- various examples for normal and inverted potential ordering
 - structural change
 - solvation, ion pairing

two reaction steps, three species

normalized relative energies of species in general two-electron transfer system

Conclusion: The Message

The Message: two is not enough ... all redox states must be considered!

Acknowledgements: Co-workers and Cooperation Partners

- Fc-silsesquioxanes: Thomas Reißig, David Ruiz Abad, Hermann Mayer
- Ru(arene) complexes: Bernhard Gollas, Stefan Dümmling
- Dithiocarboxylates: Stefan Dümmling, Gerd Weyers, N. Kuhn
- Hexaminobenzenes: Marc Würde, Cäcilie Maichle-Mössmer, Jens J. Wolff
- Boron Subhalides: Carsten Tittel, Tina Wizemann, Wolfgang Einholz
- Biphenylamines: Peter Hertl, Anton Rieker