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Multi-Electron Transfers: Examples

basic research:

thermodynamics and kinetics

mechanisms

natural processes:

redox enzymes

photosynthesis

nitrogen fixation (nitrogenase and model systems)

technical applications:

catalysis

fuel cells
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Two-Electron Transfers and Dis/Comproportionation
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Normal and Inverted Potential Ordering

expected potential difference between two successive electron transfers:
several volts

solvation effects −→ several 100 mV

2nd electron transfer more difficult: normal potential ordering

−→ equilibrium on side of A1+/−

−→ A1+/− stable against disproportionation
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Normal and Inverted Potential Ordering

expected potential difference between two successive electron transfers:
several volts

solvation effects −→ several 100 mV

2nd electron transfer more difficult: normal potential ordering

−→ equilibrium on side of A1+/−

−→ A1+/− stable against disproportionation

−→ 2nd electron transfer more easy: inverted potential ordering (Evans)

−→ equilibrium on side of A0 and A2+/−

−→ A1+/− unstable against disproportionation

structural changes during electron transfer?
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Normal and Inverted Potential Ordering

expected potential difference between two successive electron transfers:
several volts

solvation effects −→ several 100 mV

2nd electron transfer more difficult: normal potential ordering

−→ equilibrium on side of A1+/−

−→ A1+/− stable against disproportionation

−→ 2nd electron transfer more easy: inverted potential ordering (Evans)

−→ equilibrium on side of A0 and A2+/−

−→ A1+/− unstable against disproportionation

structural changes during electron transfer?

“a many-facetted mechanism” (Heinze)
cyclic voltammetry as analytical technique
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Multi-Electron Transfer: Examples and Some Systematics

examples from

organic (sterically hindered anilines, hexaaminobenzenes, hexathiobenzenes,
meso-ionic dithiocarboxylates)

organometallic (Ru(arene) complexes, fc-substituted silsesquioxanes)

inorganic (boron subhalides)

chemistry

electrons are transferred to

single redox center (= 1 electroactive group)

complex redox center

(> 1 electroactive groups)

8

<

:

fully delocalized

conjugated with some separation

multiple redox centers (> 1 electroactive groups)
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Multi-Electron Transfer: Examples and Some Systematics

examples from

organic (sterically hindered anilines, hexaaminobenzenes, hexathiobenzenes,
meso-ionic dithiocarboxylates)

organometallic (Ru(arene) complexes, fc-substituted silsesquioxanes)

inorganic (boron subhalides)

chemistry

electrons are transferred to

single redox center (= 1 electroactive group)

complex redox center

(> 1 electroactive groups)

8

<

:

fully delocalized

conjugated with some separation

multiple redox centers (> 1 electroactive groups)

“interaction”
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An Octa-Ferrocenyl Silsesquioxane — Structure
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synthesis: D. Ruiz Abad and H.A. Mayer

cage compound

cube as core structural element

redox-active centers bound by Si-C linker
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An Octa-Ferrocenyl Silsesquioxane — Structure
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synthesis: D. Ruiz Abad and H.A. Mayer

cage compound

cube as core structural element

redox-active centers bound by Si-C linker

model compound for redox-actively modified silica nanoparticles
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry
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DMSO/0.1 M NBu4PF6; Pt electrode
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry
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two redox signals

follow-up reaction at small v

DMSO/0.1 M NBu4PF6; Pt electrode
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry, Analysis
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry, Analysis
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry, Analysis
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry, Analysis
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An Octa-Ferrocenyl Silsesquioxane — Cyclic Voltammetry, Analysis
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oxidation I: adsorbed species

oxidation II: diffusing species

oxidation II –

signal shape and ∆Ep: 1 e−

resulting D is much too large
assumption: n = 8, similar E0

−→ D ≈ 1.1 × 10−7 cm2s−1 scales
with molecular weight as compared to Fc
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An Octa-Ferrocenyl Silsesquioxane — Multi-Electron Transfer

eight electrons transferred independently

equal (or at least very similar) formal potential

example of separated, non-interacting redox centers
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Ruthenium Complexes with Arene Ligands
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Cyclic Voltammetry of Bis([22]paracyclophane)Ru(II) in CH2Cl2
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CH2Cl2/0.1 M NBu4PF6; GC electrode; circles: experiment, line: simulation
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1 = −0.875 V, E0

2 = −1.060 V, ks1 = 0.077 cm/s, ks2 = 0.041 cm/s
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Cyclic Voltammetry of Bis([22]paracyclophane)Ru(II) in PC
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Cyclic Voltammetry of Bis([22]paracyclophane)Ru(II) – Comparison

Ru
2+

 
2 BF4

-

propylene carbonate dichloromethan

E0
1 = −0.938 V −0.875 V

E0
2 = −1.015 V −1.060 V

ks1 = 0.018 cm s−1 0.077 cm s−1

ks2 = 0.012 cm s−1 0.041 cm s−1

“normal” potential ordering

|∆E0| in CH2Cl2 larger than in PC −→ peak splitting

1st electron transfer faster than 2nd

electron transfer in CH2Cl2 four times faster than in PC −→ effect of τL
(Marcus theory)

solvent effect on kinetics and thermodynamics of electron transfers
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Bis(η6-triphenylene)Ru(II)
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Cyclic Voltammetry of Bis(η6-triphenylene)Ru(II) in PC
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Reduction Mechanism of Bis(η6-triphenylene)Ru(II) in PC

Ru (II) Ru (I)
qrevrev

2

EE
Ru (0)

RuTp2RuTp2RuTp2
2 +

Disp Disp

C

E irrev ks(II/I) = 0.019 cm s−1

α(II/I) = 0.5

ks(I/0) = 0.002 cm s−1

α(I/0) = 0.5

E0(II/I) = −0.775 V
E0(I/0) = −0.754 V
Kdisp = 2.195

kf,disp = 2.26 × 106 M−1s−1

kC = 840 M−1s−1

potential inversion by ≈ 20 mV

2nd electron transfer very slow
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Two-Electron Reduction of Ru-Complexes in Comparison

differences:

“inverted” potential ordering for triphenylene complex

2nd electron transfer slower for triphenylene complex by factor 10
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Two-Electron Reduction of Ru-Complexes in Comparison

differences:

“inverted” potential ordering for triphenylene complex

2nd electron transfer slower for triphenylene complex by factor 10
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change of hapticity η6 −→ η4
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Two-Electron Reduction of Ru-Complexes in Comparison

differences:

“inverted” potential ordering for triphenylene complex

2nd electron transfer slower for triphenylene complex by factor 10
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structural distortion of aromatic rings in triphenylene complex more difficult
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Imidazolium-2-dithiocarboxylates: Synthesis

N

N S

S

R

R

synthesis from carbene and CS2: N. Kuhn et al., Z. Naturf. 49b, 1473 – 1480 (1994)

R = CH3

R = C2H5

R = i-C3H7
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Imidazolium-2-dithiocarboxylates: Chemical Reduction

S
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NN

N
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- 2 e  

+ 2 e  

S

S

reducing agent potassium:

N. Kuhn et al., J. Chem. Soc. Chem. Commun. 1997, 627 – 628
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Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al.,
J. Chem. Soc. Chem. Commun.
1997, 627 – 628

orthogonal

dianion: N. Kuhn et al., Z. Naturf. 49b,
1473 – 1480 (1994)

planar
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Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al.,
J. Chem. Soc. Chem. Commun.
1997, 627 – 628

dianion: N. Kuhn et al., Z. Naturf. 49b,
1473 – 1480 (1994)

electrochemical reduction?
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Imidazolium-2-dithiocarboxylates: Structures

neutral molecule: N. Kuhn et al.,
J. Chem. Soc. Chem. Commun.
1997, 627 – 628

dianion: N. Kuhn et al., Z. Naturf. 49b,
1473 – 1480 (1994)

cyclic voltammetry as analytical technique
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Cyclic Voltammetry of 1,3-Dimethyldithiocarboxylate
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Cyclic Voltammetry of 1,3-Diethyldithiocarboxylate
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Cyclic Voltammetry of 1,3-Diisopropyldithiocarboxylate
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Imidazolium-2-dithiocarboxylates: Redox Potentials

+
in mVE vs Fc/Fc
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Imidazolium-2-dithiocarboxylates: Redox Potentials
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in mVE vs Fc/Fc
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potential inversion for isopropyl derivative
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Imidazolium-2-dithiocarboxylates: Kinetic Constants

R ks1/cm s−1 ks2/cm s−1 kcomp/M−1s−1 D/ cm2 s−1 kf / s−1

CH3 0.029 0.009 2.7 × 105 1.0 × 10−5 0.07

C2H5 0.019 0.0075 1.45 × 105 1.4 × 10−5 0.25

i-C3H7 0.027 0.011 — 1.2 × 10−5 0.045
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Imidazolium-2-dithiocarboxylates: Kinetic Constants

R ks1/cm s−1 ks2/cm s−1 kcomp/M−1s−1 D/ cm2 s−1 kf / s−1

CH3 0.029 0.009 2.7 × 105 1.0 × 10−5 0.07

C2H5 0.019 0.0075 1.45 × 105 1.4 × 10−5 0.25

i-C3H7 0.027 0.011 — 1.2 × 10−5 0.045

2nd electron transfer slower
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Imidazolium-2-dithiocarboxylates: Kinetic Constants

R ks1/cm s−1 ks2/cm s−1 kcomp/M−1s−1 D/ cm2 s−1 kf / s−1

CH3 0.029 0.009 2.7 × 105 1.0 × 10−5 0.07

C2H5 0.019 0.0075 1.45 × 105 1.4 × 10−5 0.25

i-C3H7 0.027 0.011 — 1.2 × 10−5 0.045

based on Marcus theory: structural change in 2nd step
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Imidazolium-2-dithiocarboxylates: Structural Reorganisation
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Imidazolium-2-dithiocarboxylates: Structural Reorganisation

substituents R hinder planarization
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Hexakis(dimethylamino)benzene and its Dication: Structures

N(CH3)2

N(CH3)2

N(CH3)2

N(CH3)2

(CH3)2N

(CH3)2N

Hückel-aromatic compound; planar

two polymethine-units; twist
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Hexakis(dimethylamino)benzene: Cyclic Voltammetry
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CH3CN/CH2Cl2 1:1, 0.1 M NBu4PF6; Pt electrode; v = 1.0 Vs−1, c = 0.24 mM
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CH3CN/CH2Cl2 1:1, 0.1 M NBu4PF6; Pt electrode; v = 1.0 Vs−1, c = 0.24 mM

extreme potential inversion

for two-electron oxidation
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Hexakis(dimethylamino)benzene: Cyclic Voltammetry
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CH3CN/CH2Cl2 1:1, 0.1 M NBu4PF6; Pt electrode; v = 1.0 Vs−1, c = 0.24 mM

change from aromatic

to bis(polymethine) structure
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Boron Subhalides: Cluster Structures

. . .

BB B B
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B BBB
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B BBB

B
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B
BB

B

B4X4

X = Cl, Br, I
dianions : closo structure according to
Wade’s rules

neutral molecules : hypercloso cluster with
electron deficit
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Boron Subhalides: Cyclic Voltammetry of B8X•−

8 and B9X•−
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c = 0.29 mM
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c ≈ 2 mM

CH2Cl2/0.1 M NBu4PF6; Pt electrode
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Boron Subhalides: Cyclic Voltammetry of B8X•−

8 and B9X•−
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B9Cl9

v = 0.1 V/s
c = 0.29 mM

B8Cl8

v = 0.2 V/s
c ≈ 2 mM

CH2Cl2/0.1 M NBu4PF6; Pt electrode

normal potential ordering; no dramatic structural changes
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Boron Subhalides: Cyclic Voltammetry of B8X•−

8 and B9X•−
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B9Cl9

v = 0.1 V/s
c = 0.29 mM

B8Cl8

v = 0.2 V/s
c ≈ 2 mM

CH2Cl2/0.1 M NBu4PF6; Pt electrode

π-back bonding compensates electron deficit in hypercloso clusters
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Sterically Hindered Biphenylamines: Structure and CyclicVoltammograms

R = H
c = 1.3 mM

v = 0.5 Vs−1

R = OCH3
c = 1.5 mM

v = 0.5 Vs−1

R = N(CH3 )2
c = 1.5 mM

v = 0.05 Vs−1

CH3CN/0.1 M NEt4ClO4; Pt electrode; potentials vs. Ag/Ag+ (0.01 M in CH3CN)

B. Speiser, A. Rieker, and S. Pons, J. Elec-

troanal. Chem. 147, 205 – 222 (1983).
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Sterically Hindered Biphenylamines: Two-Electron Oxidation Mechanism

NH2

R

NH2

R

NH2

R

•+ 2+

−e−

E0
1

−e−

E0
2

NH2
R NH2R

−e− •+

Hammett correlation with σ+ substituent constants

stabilization of radical cation by planarization – normal potential ordering
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Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

each case to be analyzed carefully

ensemble of voltammograms

simulation, parameter fitting

thermodynamics and kinetics

various examples for normal and inverted potential ordering

structural change

solvation, ion pairing
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Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

each case to be analyzed carefully

ensemble of voltammograms

simulation, parameter fitting

thermodynamics and kinetics

various examples for normal and inverted potential ordering

structural change

solvation, ion pairing

however: not fully systematic
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Conclusions: Multi-Electron Transfers

mechanistic variations — side/follow-up reactions

each case to be analyzed carefully

ensemble of voltammograms

simulation, parameter fitting

thermodynamics and kinetics

various examples for normal and inverted potential ordering

structural change

solvation, ion pairing

two reaction steps, three species
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Conclusion: Normal vs. Inverted Potential Ordering

∆Gnorm,rel
1.0
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0.0
A0

A1+/−

A2+/−

equal normal inverted formal potentials

∆G = nFE0

normalized relative energies of species in general two-electron transfer system

To Invert or Not To Invert –Reasons for the Occurrence of Normal and Inverted Formal Potentials in Molecular Multi-Electron Transfer Systems – p.34/36



Conclusion: Normal vs. Inverted Potential Ordering

∆Gnorm,rel
1.0

0.5

0.0
R=Me R=Et R=iPr

∆G = nFE0

normalized relative energies of species in dithiocarboxylate system
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Conclusion: Normal vs. Inverted Potential Ordering

∆Gnorm,rel
1.0

0.5

0.0
A0

A1+/−

A2+/−

equal normal inverted formal potentials

∆G = nFE0

normalized relative energies of species in general two-electron transfer system

relative energies of three species are decisive
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Conclusion: Normal vs. Inverted Potential Ordering

∆Gnorm,rel
1.0

0.5

0.0
A0

A1+/−

A2+/−

equal normal inverted formal potentials

∆G = nFE0

normalized relative energies of species in general two-electron transfer system

stabilization of A2+/− or destabilization of A1+/−

leads to potential inversion
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Conclusion: Normal vs. Inverted Potential Ordering

∆Gnorm,rel
1.0

0.5

0.0
A0

A1+/−

A2+/−

equal normal inverted formal potentials

∆G = nFE0

normalized relative energies of species in general two-electron transfer system

structural rearrangement can be stabilizing
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Conclusion: The Message

The Message:
two is not enough . . .

all redox states must be considered!
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