Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes

Markus Schwarz and Bernd Speiser

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18,

D–72076 Tübingen

bernd.speiser@uni-tuebingen.de

Introduction: Electrosynthesis of Compound Libraries?

combinatorial synthesis of compound libraries

- \longrightarrow multiple reactions of similar starting compounds
 - \longrightarrow small amount of individual product(s)

screening: quickly assess some properties of library elements

- \longrightarrow redox behavior ("redox screening")
- \longrightarrow synthesis products ("synthesis screening")
- \longrightarrow mechanisms ("mechanistic screening")
- \longrightarrow reaction channels ("reactivity screening")
- standard method in drug design and catalyst optimization
- electrosynthesis?

earlier approaches:

Yudin et al.: spatially adressable electrolysis platform – galvanostatic

T. Siu, W. Li, and A.K. Yudin, J. Comb. Chem. 2, 545 – 549 (2000)

earlier approaches:

- Yudin et al.: spatially adressable electrolysis platform galvanostatic
- Breinbauer et al.: mediated electrolysis with polymer bead support

S. Nad and R. Breinbauer, Angew. Chem. 116, 2347 - 2349 (2004); Angew. Chem. Intl. Ed. 43, 2297 - 2299 (2004)

earlier approaches:

- Yudin et al.: spatially adressable electrolysis platform galvanostatic
- Breinbauer et al.: mediated electrolysis with polymer bead support
- Moeller et al.: micro-electrolysis on a chip

E. Tesfu, K. Maurer, and K.D. Moeller, J. Am. Chem. Soc. 128, 70 - 71 (2006)

earlier approaches:

- Yudin et al.: spatially adressable electrolysis platform galvanostatic
- Breinbauer et al.: mediated electrolysis with polymer bead support
- Moeller et al.: micro-electrolysis on a chip

our system:

- combi-SECM instrument
- C–C-bond forming reaction: reductive coupling of α,β-unsaturated esters and allylbromides
- electrolyte: room temperature ionic liquid

T. Erichsen, S. Reiter, V. Ryabova, E.M. Bonsen, W. Schuhmann, W. Märkle, C. Tittel, G. Jung, and B. Speiser, Rev. Sci. Instrum. 76, 062204-1 – 062204-11 (2005)

T. Erichsen, S. Reiter, V. Ryabova, E.M. Bonsen, W. Schuhmann, W. Märkle, C. Tittel, G. Jung, and B. Speiser, Rev. Sci. Instrum. 76, 062204-1 – 062204-11 (2005)

The Experiment: Reaction

cathodic reduction,

allylbromide (1) + α , β -unsaturated ester (2)

The Experiment: Reaction

cathodic reduction,

allylbromide (1) + α , β -unsaturated ester (2)

The Experiment: Reaction

cathodic reduction,

allylbromide (1) + α , β -unsaturated ester (2)

The Experiment: Design of the Experiment

galvanostatic reduction of allylbromides and α , β -unsaturated esters: S. Satoh et al., Bull. Chem. Soc. Jpn. *54*, 3456 – 3459 (1981)

changes:

- **P** galvanostatic \longrightarrow potentiostatic (in DMF)
- **DMF** \longrightarrow ionic liquid electrolyte ([BMIM]BF₄)

- \square macro cell \longrightarrow miniaturization (200 μ l)
- \blacksquare single reaction \longrightarrow combinatorial ($6 \times 8 = 48$ elements)

The Experiment: Components

8 α , β -unsaturated esters

Potentiostatic Reduction in DMF: Allylbromide + Diethyl Fumarate

Potentiostatic Reduction in DMF: Allylbromide + Diethyl Fumarate

co-electrolysis of equimolar amounts (0.4 mmol) in DMF/0.1 M NBu₄PF₆ at -1.69 V

- 20 h, 139 C, 1.8 F
- extraction with ether
- GC-MS: formation of ethyl-3-(ethoxycarbonyl)-5-hexanoate 4aa

Potentiostatic Reduction in DMF: Allylbromide + Diethyl Fumarate

co-electrolysis of equimolar amounts (0.4 mmol) in DMF/0.1 M NBu₄PF₆ at -1.69 V

- 20 h, 139 C, 1.8 F
- extraction with ether
- GC-MS: formation of ethyl-3-(ethoxycarbonyl)-5-hexanoate 4aa

transfer galvanostatic \longrightarrow potentiostatic ok

Miniaturized Potentiostatic Reduction in [BMIM]BF₄**: Allylbromide + Diethyl Fumarate**

- cyclic voltammetric monitoring before (full) and after (dotted) electrolysis (v = 0.3 V s⁻¹)
- ${f P}_{
 m Ep}({f 2a})=-1.45$ V, $E_{
 m p}({f 1a})pprox -2$ V

decrease of negative extension of potential window

decrease of $i_{
m p}$ (2a)

Miniaturized Potentiostatic Reduction in [BMIM]BF₄**: Allylbromide + Diethyl Fumarate**

- c(1a) = c(2a) = 0.2 mM, reaction volume = 1 ml
- **P** potentiostatic electrolysis at -1.725 V
- **1**3.5 h, 2.31 C, 1.2 F
 - extraction with hexane, GC-MS

Miniaturized Potentiostatic Reduction in [BMIM]BF₄**: Allylbromide + Diethyl Fumarate**

transfer DMF \longrightarrow [BMIM]BF₄ ok miniaturization ok

Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes - p.10/19

1a/2a

1a/2c

Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes - p.11/19

1a/2c

- ester more easy to reduce
- coupling product identified by molecular ion and main fragments
- identity of 4aa assigned based on ester radical anion attack on allylbromide
- MS does not allow to differentiate between isomers easily

1a/2c

- ester more easy to reduce
- coupling product identified by molecular ion and main fragments
- 4ca is main product
- isomeric side product, tentatively assigned as 3ca

allylbromide more easy to reduce

no products identified

electrolysis with subsequent GC-MS provides screening technique

Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes – p.11/19

small molecular ion peak M+

п
WW

WW = wash well

- 48 combinations of allylbromides and esters
- sequential electrolysis (30 min) in wells (volume: 200 μ l) mixing washing

The Combinatorial Experiment: A Collection of 48 Electrolyses – Screening for Fragments in MS

after	30 min:							
	Α	В	С	D	E	F	G	н
1	WW	F1/F2/F3/F4	M ⁺ /F1/F2/F3/F4	M ⁺ /F1/F3/F4	F1/F2/F3/F4			WW
2	WW	F1/F2/F4	F1/F2/F3/F4	M ⁺ /F1/F2/F4	F1/F2/F4	_		WW
3	WW	—	—	—	—	—		WW
4	WW	M ⁺ /F1/F4	—	F1/F3	F1/F4	—		WW
5	WW	—	—	—	—	—		WW
6	WW	—	—	—	—	—	—	WW
7	WW	—	—	—	—	—		WW
8	WW	F1/F3/F4	F1/F4		F4	F1/F4	F1	WW

The Combinatorial Experiment: A Collection of 48 Electrolyses – Screening for Fragments in MS

after	30 min:			_				
	Α	В	С	D	E	F	G	н
1	WW	F1/F2/F3/F4	M ⁺ /F1/F2/F3/F4	M ⁺ /F1/F3/F4	F1/F2/F3/F4		_	WW
2	WW	F1/F2/F4	F1/F2/F3/F4	M ⁺ /F1/F2/F4	F1/F2/F4	—	—	WW
3	WW	—	—	—	—	—		WW
4	WW	M ⁺ /F1/F4	—	F1/F3	F1/F4	—		WW
5	WW	—	—	—	—	—		WW
6	WW	—	—	—	—	—		WW
7	WW	—	—	—	—	—		WW
8	WW	F1/F3/F4	F1/F4		F4	F1/F4	F1	WW

esters 2c, 2e, 2f, and 2g do not react at all to expected products (rows 3, 5, 6, 7)

allylbromides 1e and 1f do only react with 2h to expected products (columns F, G)

The Combinatorial Experiment: A Collection of 48 Electrolyses – Screening for Fragments in MS

after 30 min:								
	Α	В	С	D	E	F	G	н
1	WW	F1/F2/F3/F4	M ⁺ /F1/F2/F3/F4	M ⁺ /F1/F3/F4	F1/F2/F3/F4	_		WW
2	WW	F1/F2/F4	F1/F2/F3/F4	M ⁺ /F1/F2/F4	F1/F2/F4	_		WW
3	WW	—	—	—	—	—	—	WW
4	WW	M ⁺ /F1/F4	—	F1/F3	F1/F4	—		WW
5	WW	—	—	—	—	_		WW
6	WW	—	—	—	—	—	—	WW
7	WW	—	—	—	—	—		WW
8	WW	F1/F3/F4	F1/F4	_	F4	F1/F4	F1	WW

- esters 2c, 2e, 2f, and 2g do not react at all to expected products (rows 3, 5, 6, 7)
- allylbromides 1e and 1f do only react with 2h to expected products (columns F, G)

how can this pattern be explained?

The Mechanistic Pattern: Esters with Electron-Donating Substituents are Not Reactive

The Mechanistic Pattern: Nitrophenyl Substituted Ester is Not Reactive

two reduction waves – characteristic for NO_2 reduction

radical anion of 2g stabilized and unreactive

The Mechanistic Pattern: Allylbromides with Electron-Withdrawing Substituents are Not Reactive

 \blacktriangleright relatively positive reduction potential \longrightarrow allylbromides are reduced

electron-withdrawing substituents decrease charge density in allyl anions

allyl anions become less reactive

exception: reaction with ester 2h – even less negative potential and ester reduction mechanism prevails

Conclusions

C–C-bond forming reaction

- transfer from classical galvanostatic electrolysis conditions in DMF to miniaturized potentiostatic reaction in an ionic liquid
- combi-SECM approach with GC-MS allows synthesis screening: which combinations do react as intended?
 - explanations through mechanism
- differentiation between reaction channels (isomers) difficult: instead of MS use NMR (coupling with HPLC, GC)?

Acknowledgements

- Deutsche Forschungsgemeinschaft for funding
- Wolfgang Schuhmann, Bochum, for cooperation
- Graeme Nicholson, Tübingen, for technical assistance with GC-MS experiments