Redox-active Covalent Modifications on Spherical Non-porous Silica Nanometric Particles

Anna Budny, Filip Novak, Nicolas Plumeré, and Bernd Speiser

Institut für Organische Chemie, Universität Tübingen

Chemistry in Interphases

The Redox-actively Modified Silica Particle Concept

- inert silica particles as core
- covalent bonding of redox-active molecules
- preferable conditions:
 - spherical: homogeneity
 - non-porous: accessibility
 - monodisperse: immobilization

controlled hydrolysis and condensation (Stöber)

 $Si(OR)_4 + H_2O \rightleftharpoons (OR)_3Si(OH) + ROH$ pH = 7 $(OR)_3Si(OH) + H_2O \rightleftharpoons SiO_2 + 3ROH$

controlled hydrolysis and condensation (Stöber)

shape and monodispersity

- controlled hydrolysis and condensation (Stöber)
- shape and monodispersity
- size and porosity

			specif	ïc surface area	specific concentration	
material	al diameter d/nm		$A/m^2 \ g^{-1}$		$\Gamma_{ m max}$ /mol ${\sf g}^{-1} imes 10^4$	
	DLS	SEM	BET	calculated	calculated	
M1a	150	140±18	33.1	19.48	1.74	
M1b	187	178±10	24.5	15.32	1.37	
M1c	252	252±25	16.0	10.82	0.967	
M1d	290	262±19	16.8	10.41	0.930	
M1e	639	592±25	6.4	4.61	0.411	
M1f	755	735±23	4.2	3.71	0.331	

controlled hydrolysis and condensation (Stöber)

- shape and monodispersity
- size and porosity
- surface chemistry: OH

/				specif	ic surface area	specific concentration
	material	diameter d/nm		A /m 2 g $^{-1}$		$\Gamma_{ m max}$ /mol g $^{-1} imes 10^4$
		DLS	SEM	BET	calculated	calculated
	M1a	150	140±18	33.1	19.48	1.74
	M1b	187	178±10	24.5	15.32	1.37
	M1c	252	252±25	16.0	10.82	0.967
	M1d	290	262±19	16.8	10.41	0.930
	M1e	639	592±25	6.4	4.61	0.411
	M1f	755	735±23	4.2	3.71	0.331

Aminopropyl Modified Silica Particles

Modification Pathways

Redox-actively Modified Silica Particles

Redox-actively Modified Silica Particles

Redox-actively Modified Silica Particles

 $l = 735 \ {\sf nm}$

ruthenium complex modification (M6f)

³¹P-VACP/MAS solid-state NMR

20 180 80 60 40 -20 160 140 120 100 0 -40 -60 -80

(ppm)

Particle Agglomeration Behavior

- d = 735 nm
- dynamic light scattering [%]
- single/multiple signal(s)
- depending on solvent properties
- modified materials not agglomerated in CH_2CI_2

Adsorption of Modified Silica Particles on Pt Electrodes

 no immediate electrochemical response at Pt electrode in CH₂Cl₂ suspension (broken line)

longer exposure: weak, but increasing signal in CV (full line)

Adsorption of Modified Silica Particles on Pt Electrodes

 $\blacksquare d = 592 \text{ nm}$

fc modification (M4e)

spontaneous adsorption

Adsorption of Modified Silica Particles on Pt Electrodes

 \blacksquare d = 260 nm

aminopropyl modification (M2)

dip coating from water/ethanol, 1:1 with controlled retraction

- time scale dependent shape of voltammograms
- fc modified particles (M4f)

time scale dependent shape of voltammograms

Ru modified particles (M6f)

0.5 Vs

10,0

5,0

0,0

-5,0

-0,2

-0,1

 deviation from linear i_p vs. v behavior
 similar to dendrimers (Amatore et al.)
 electron hopping on small objects

Catalytic Activity of Modified Silica Particles

 Ru complex: immobilized hydrogenation catalyst
 transfer hydrogenation of acetophenone

Catalytic Activity of Modified Silica Particles

- Ru complex: immobilized hydrogenation catalyst
- transfer hydrogenation of acetophenone
- activity:
 - bare particles: –
 - modified particles: +
 - solution: –
 - recovered particles: + (reduced)

material	duration/h	turnover/%	TOF/ h^{-1}
M1	20	0	—
M6f	14	100	6.45
solution	21	0	—
M6f (rec.)	91	56	0.62

Si–O–Si bond hydrolysis?

- Si–O–Si bond hydrolysis?
- reduction of Si–OH
- hydrosilylation
 - Pt catalysis

- Si–O–Si bond hydrolysis?
- reduction of Si–OH
- hydrosilylation
 - Pt catalysis
 - photochemical activation

- Si–O–Si bond hydrolysis?
- reduction of Si–OH
- hydrosilylation
 - Pt catalysis
 - photochemical activation

Si-C Bonded Ferrocene

2000

1000

0

Si-C Bonded Ferrocene

Si–C Bonded Ferrocene

cyclic voltammetry after spontaneous adsorption, scan rate dependence

Si-C Bonded Ferrocene

cyclic voltammetry after spontaneous adsorption, effect of background correction

Conclusions

- Stöber silica nanospheres as support
- unique environment for covalently bound redox-active molecules
- electrochemical activity after adsorption: electron hopping
- catalytic activity: transfer hydrogenation
- alternative immobilization strategy: Si–C bonds by photochemical hydrosilylation

Acknowledgements

cooperation and coworkers

- Klaus Albert, Borre Borresen, Thomas Chassé, Hans Egelhaaf, Peter Grathwohl, Ekkehard Lindner, Hermann A. Mayer
- Michaela Reginek, Bernd Schetter, Diana Straub
- funding
 - Deutsche Forschungsgemeinschaft (DFG)
 - Max-Buchner-Forschungsstiftung
 - Marie Curie training site "SurFace"