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Abstract 

A method using the artificial neural network Fuzzy ARTMAP (FAM) was developed to 

classify cyclic voltammograms according to underlying reaction mechanisms. Different 

preprocessing methods for reducing input dimensionality, including Principal Component 

Analysis (PCA), feature extraction, and Wavelet Transform (WT), were compared. Results 

obtained for simulated and experimental voltammograms show that FAM can be applied to 

the classification into E, Eqr, EC and EqrC mechanisms successfully. The efficiency of WT 

for data compression was also confirmed. Experiments demonstrate a significant 

correspondence between misclassifications and intersections of class distributions for 

different reaction mechanisms. It was found by analyzing the error distributions of FAM 

that the most classification errors arise in the overlapping areas of two reaction 

mechanisms. The relationship of the resulting class distribution to the mechanistic zones of 

classical zone diagrams is discussed. 

Keywords: Artificial Neural Networks, Classification, Fuzzy ARTMAP, Wavelet 

Transform, Voltammetry, Reaction Mechanism 

 

1. Introduction 

Electroanalytical techniques, which are based on the measurement of the current flowing 

through an electrode or the electrode potential, have found wide application due to their 

high sensitivity, adequate selectivity as well as the low cost of instrumentation and 

maintenance [2]. They have become more and more popular as diagnostic tools for 

analytical purposes [3]. Furthermore, these techniques provide detailed information about 
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reactions including or coupled to electron transfer steps, thus enabling mechanistic analysis 

[4].  

Recently, laboratory automation and software-aided experimentation has been 

established as a noticeable trend in modern electrochemistry [5]. Voltammetric methods 

are in the main focus of automation owing to their wide applicability and the high speed of 

experiments. There is a trend to develop computer-based automatic systems for 

voltammetry [6, 7]. Such systems are capable of producing a huge amount of data for 

subsequent interpretation by electrochemists. To help them extract as much information as 

possible from measured signals and to facilitate the understanding of experimental results, 

powerful data analysis tools are required. These tools should be able to recognize 

relationships in acquired data, which is a supplement for the development of models from 

fundamental theory. It can be especially important to derive models from real data when 

there is possibly a lack of theoretical knowledge or a discrepancy between theory and 

experiments.    

Intelligent techniques such as artificial Neural Networks (NNs) [8] meet this requirement 

and have been successfully applied to the analysis of voltammetric measurements in order 

to achieve high efficiency. NNs possess several valued properties: nonlinearity of 

modeling, adaptivity, and generalization. The first property means that they can represent 

any nonlinear relationship between their inputs and outputs. The second and third 

properties mean that an NN can learn from examples and is able to generalize from old 

data to new ones. This makes them very powerful in classification and pattern recognition 

tasks. The last decades were characterized by a growth in the amount of NN research and 

publications which proved their applicability to the interpretation of noisy, incomplete, or 
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inconsistent input data [9]. In recent years, NNs have also been used in electroanalytical 

chemistry [3, 10].  

A widespread use of NNs in electrochemistry is calibration [10-13]: identifying and 

quantifying electroactive species in mixtures when electrochemical responses are 

complicated by highly overlapping signals or reactions between components [11]. A 

simple example of such an application is the estimation of the concentration for one or 

more analytes of interest from a multiple number of measurements. There are many recent 

studies of electrochemical calibration with NNs. A much less investigated approach is to 

determine automatically a reaction mechanism at the electrode on the basis of data 

analysis. No NN applications to this problem were found in the literature. Some 

comparable studies were previously performed for expert systems [14-17], and the nearest 

neighbor classifier [18, 19].  

Automation plays an important role in modern industry: the development of systems 

with minimum functions for an operator seems likely to become ubiquitous in the near 

future.  In this context, the use of NNs can help the chemist automatically classify an 

electrode reaction into one of the limiting cases for which comprehensive theoretical 

models have been developed (qualitative data analysis). Such elucidation of an electrode 

reaction is a typical stage in the analysis of electrochemical data. The importance of the 

discrimination between the limiting mechanisms can be confirmed by the fact that kinetic 

zone diagrams have been proposed already several decades ago to visualize the transition 

from one limiting mechanism to another [20, 21]. Exact identification of the reaction 

mechanism with respect to the limiting cases is an important goal of electrochemical 

experimentation and has great practical significance. The knowledge of the reaction 
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mechanism allows one to find relevant kinetic and thermodynamic reaction parameters in a 

subsequent step (quantitative data analysis).  

The aim of the present research was the automatic classification of voltammetric signals 

for a limited set of reaction mechanisms with a chemical step coupled to an electron 

transfer. To solve this task, an intelligent classifying system based on an NN algorithm 

called Fuzzy ARTMAP (FAM) was designed and implemented in the framework of the 

EChem++ project [1, 22]. This project provides open source software for support of 

electrochemical experiments, including instrumentation control, data acquisition, 

numerical simulation, and data analysis.  

The paper is organized as follows: Section 2 discusses the designed classification system 

as part of the EChem++ software package [23]. Brief descriptions of the algorithms used 

will also be given in this section. Section 3 is devoted to the experimental design and 

settings. Finally, Section 4 presents results of classification experiments with simulated 

and measured voltammograms.  

 

2. Method: design of a classification system 

2.1 An NN in the EChem++ framework 

The objectives of EChem++ include real time control of an electrochemical experiment, 

simulation and data analysis. Software implementations for each of these tasks will be 

provided in separate modules [22]. For example, the module Experiment defines all 

settings which are needed to perform an experiment. Additionally, it stores experimental 

data. Analogously, the module Model consists of procedures necessary for simulation of an 

electrochemical reaction on the basis of model equations and procedures for storage of 

simulated data. It also contains some model-specific information which has no counterpart 
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in Experiment, such as, for example, the simulation algorithm. Finally, the module 

Analysis compares experimental and simulated data and estimates system parameters (e.g. 

rate constants of chemical reactions). In addition to such user output, it also produces 

feedbacks to the modules Experiment and Model defined either automatically or by the 

user. As a part of the data analysis tools, the classification of experimental data with an NN 

belongs to the module Analysis.  

After acquiring the experimental data, usually, researchers suggest a reaction mechanism 

of the system under study. Then a computer simulation is performed for the model 

proposed, followed by a comparison of simulated and experimental results with the aim of 

verifying the reaction mechanism.  

An NN is integrated into the procedure as shown in Figure 1. Such a use of the NN in the 

data analysis module of the EChem++ package corresponds to the last stage of а general 

problem-solving procedure of an electrochemical problem solving environment [7]. 

Measured data are preprocessed by a feature extraction procedure in order to reduce input 

dimensionality (i.e. the number of input components M) before supplying them to the NN. 

Preprocessing is a method to preserve only the most important information in the data, 

which improves the classification quality. A specific technique used in this work is 

discussed in Subsection 2.2. After preprocessing, feature vectors are formed and the 

previously trained NN can classify them into several possible classes according to the 

underlying reaction mechanisms. Classification results help the chemist (expert) draw 

conclusions about the investigated electrochemical process and optimize the experimental 

conditions. She/he can control the experiment settings or change simulation parameters 

properly if an unexpected discrepancy between simulated and measured signals indicates 

incorrect experimental conditions, simulation parameters or insufficient modeling of the 
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real mechanism and system. Of course, the simulation deals with an idealistic situation 

which neglects experimental errors such as noise, reference electrode shift or inadequate 

representation of complicating physical processes. Thus, the NN should be able to 

generalize in order to overcome such effects. Classification with the NN can be considered 

as a prerequisite to quantitative analysis.   

 

Figure 1. An NN in electrochemical data processing of the EChem++ framework. 

 

An NN is a computational model for information processing that represents a directed 

graph composed of units (known as neurons) connected by weighted links (weights) [8]. 

Typically, an NN classifier functions in one of two modes: training or classification. 

Training is an iterative process of input presentation and subsequent adaptation of network 

parameters, and possibly, a network structure. In the supervised learning mode which will 

be used here, a network obtains a class label together with an input vector. Adaptation 

should adjust the network parameters (typically the weights of connections between 

neurons) so that if the same input vector would be presented to the trained network, its 

output would be equal to the correct class label. Therefore the aim of training is to 

minimize misclassification. The classification stage, in turn, is a decision making process: 

a network predicts a class label for a previously unseen input vector.  

In NN research, data are usually divided into a training and a test set. The training set is 

used for learning, while the test set is used to check the NN performance. From the 

viewpoint of statistical learning theory [24], the larger a training set, the more stable 

modeling with an NN is achieved and more reliable classification results are expected. 

Unfortunately, sufficiently large training sets are very rare when dealing with chemical 
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experimental data. In this domain, researchers often use only tens or even fewer training 

samples instead of hundreds or thousands required [11, 25].  

It is worth noting that such small training sets are insufficient for providing satisfactory 

classification results, especially with high-dimensional data, for two reasons. First, in the 

case when the dimensionality of data exceeds the size of a training set, the classification 

task becomes very difficult because the number of observations should generally be greater 

than the number of explanatory variables [26]. And second, when degrees of freedom for 

an NN model (approximately the number of weights, or simply speaking tuned parameters) 

approach the number of training samples, the NN is prone to fitting irrelevant aspects of 

the training data (overfitting [27]). Since the theory of NN computation has been 

extensively discussed elsewhere [8, 9], only a brief description of data processing in the 

special case of FAM will be given in Subsection 2.3. 

 

2.2. Wavelet Analysis 

As one of the most powerful preprocessing methods wavelet analysis was used among 

other techniques for data compression in the present study. Recently, the use of wavelet 

analysis for signal processing has received intensive attention of researchers, and 

applications in electroanalytical chemistry have also been proposed [2, 28-31]. They range 

from de-noising of electrochemical signals to improving curve fitting procedures. In 

electrochemical data analysis, the Wavelet Transform (WT) has been established as a 

promising method for data reduction as well [25].  

In contrast to the well-known Fourier transform which maps a function from the time 

domain into a pure frequency domain, WT maps a function from the time domain into a 

compound time-frequency space. Fourier analysis consists of breaking up a signal into sine 
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waves of various frequencies. Similarly, wavelet analysis decomposes a signal into basis 

functions or wavelets ψj,k defined in the two-dimensional space of scale (a variable related 

to the frequency, see below) and time. Wavelets are finite, asymmetric, and non-periodic. 

The fact that wavelets are bounded in time provides wavelet decomposition with 

advantageous abilities, such as compressing information as well as approximating non-

smooth and non-stationary signals. The discrete WT represents a function f(t) as a linear 

combination of ψj,k: 

∑=
kj

kjkj tctf
,

,, )( )( ψ       (1) 

The basis functions used in WT are shifted and scaled versions of a mother wavelet Ψ:  
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where j and k are integers, and a = 2j is called a scale. The scaling index j changes the 

behavior of ψj,k in the frequency space, while the translation index k shifts the wavelet 

along the time axis. Eq. (2) represents dyadic sampling of the time-scale space. Thus, the 

mother wavelet is stretched/compressed in discrete steps to create different scales based on 

powers of two. 

WT allows decomposition of a signal into multiresolution components. The lower the 

scale (smaller j), the more “compressed” is the wavelet. The fine and coarse resolution 

components are obtained at low and high scales, respectively. They also capture the high-

frequency and the low-frequency parts of a signal. There are several families of mother 

wavelets with different shapes and properties, among them the Daubechies family is one of 

the most popular [32].  
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The discrete WT is most frequently computed by recursive multiplication of the signal 

with a particular filter matrix. At each scale level l a set of 2l-1 wavelet coefficients is 

calculated where l < L and N = 2L is the length of the input signal s. Detailed coefficients 

(details) are computed by applying a high-pass filter to the signal and downsampling the 

result by a factor of 2. Approximation coefficients used as input at the next scale are 

computed by low-pass filtering with downsampling. The scheme of this process is shown 

in Figure 2. Starting from s, the first step produces two sets of coefficients: approximation 

coefficients cA1, and detail coefficients cD1. The next step splits cA1 in two parts using the 

same scheme, replacing s by cA1 and producing cA2 and cD2, and so on (Figure 3). The 

discrete WT consists of log2N stages at most. The wavelet decomposition of the signal s 

analyzed at level l has the following structure: cAl, cDl, cDl-1, …, cD1. The selection of a 

suitable level for the decomposition hierarchy depends on the signal type.  

 

Figure 2. A discrete WT algorithm.   

Figure 3. An example of a wavelet structure. 

 

 

2.3. FAM Classifier 

The classification system of EChem++ is based on the FAM algorithm [33] which 

belongs to a family of NNs, called Adaptive Resonance Theory (ART) [34]. Initially, the 

building blocks used in all ART networks were designed in order to simulate human 

information processing, in particular, visual processing, as plausibly as possible. After 

general ART principles were formulated by Grossberg [34], a large family of self-

organizing NNs for unsupervised and supervised learning was developed. ART-based NNs 
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are well suited for practical classification applications in different fields [35-38] including 

some interesting applications in chemistry [12, 13, 39-42]. Their advantages in comparison 

to other neural algorithms are the ability of stable fast learning, adaptively growing 

structure, simple computations and tuning. They were found to be more accurate in solving 

classification tasks than some feedforward networks [38, 42]. ART structure is based on a 

two-layered competitive learning network [43], but the training paradigm is different. The 

principle of match-based learning in ART networks as opposite to the more usual error-

based learning with global optimization ensures temporal stability and allows a network to 

be trained online. Match-based learning is tightly coupled with the term “resonance” in the 

name of the paradigm. It reflects the fact that in an ART network information reverberates 

back and forth between layers. If a close correspondence between neuron activities at both 

layers occurs, then this resonant state initiates the network’s learning process. Unless the 

network has achieved resonance, no learning takes place. 

FAM is a supervised classifier combining ART principles with fuzzy logic [44]. In this 

study, a simplified version of FAM as represented in Figure 4 was used. It consists of a 

module ARTa and an associative memory Map Field (see Figure 4). ARTa includes three 

layers: a preprocessing layer F0, a comparison layer F1, and a competitive layer F2. It 

operates as follows. As an input vector Ia is presented, it is preprocessed at F0 and 

transmitted to the next layer. Then the F1 layer transfers it to the competitive layer F2 to 

find a winner. Each neuron of F2 stores in its weight connections a prototype, i.e. a set of 

relevant features, describing a cluster of inputs in the feature space (inputs belonging to the 

same cluster share common characteristics). The best matching prototype, that is the one 

with the largest activation, is said to be a winner.  
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Figure 4. A simplified FAM network; explanation of symbols, see text. 

 

The winner sends its response back to the F1 layer where the “vigilance test” occurs: the 

input vector has to be compared with the winner’s prototype against a user-specified 

threshold (the so-called vigilance parameter ρ) which defines the minimum required 

similarity between an input vector and the prototype of the cluster it can be associated 

with. If the calculated similarity is smaller than ρ, the current winner is reset and the search 

process starts again without it. Once a good matching prototype is found, no reset signal is 

sent and the network attains resonance. When no existing prototype provides the 

satisfactory similarity, then the network will develop a resonant state adding a new neuron 

to the competitive layer, whose prototype is first installed as the current input vector. A 

result of the resonant state is learning: updating the weight vector of the winning neuron in 

order to code the current input.  

Thus, ART has a dynamically self-organizing structure within which the number of 

prototypes grows to adapt to the environment. Due to this property, an ART network is 

capable of incorporating new data preserving good performance on previously learned data 

and therefore successfully solves the so-called stability-plasticity dilemma [43]. Output 

neurons in ART represent clusters of predefined similarity among input patterns. Tuning of 

the vigilance parameter plays an important role in ART classification because the size of a 

network as well as its generalization ability depends on the value of ρ: with high values, 

the network tends to create a large number of small clusters to represent the underlying 

class distributions while with low ρ the clusters are large.  

After the presentation of an input vector Ia with the components Ii
a ∈ [0, 1] to the 

preprocessing layer F0, it is complement coded into a 2M-dimensional vector A = (I1
a, …, 

 12



IM
a, 1 - I1

a, …, 1 – IM
a). This means normalization to a constant vector length in terms of 

the “city-block” or “Manhattan” norm L1 denoted as |…| [45]. For an M-dimensional 

vector X, L1 is calculated as  

∑
=
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M
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1
 || X .      (3) 

Thus, for all complement coded input vectors the norm is the same:  
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The next step is the choice of a winner. At the layer F2, the activation function Tj defined 

by the Weber Law [43] is computed for each neuron: 
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where „∧“ denotes the fuzzy AND operator, ) ,(min)( iii yx≡∧YX , and α > 0 is called 

the choice parameter. Then the best matching prototype J is found as belonging to the node 

with the maximal value of Tj. 

{ }N...,,jTT jJ   1: max == .    (6) 

If more than one Tj is maximal, the node with the smallest index is chosen. 

The choice of J must be confirmed by checking the vigilance test at the layer F1: 

ρC J
J ≥

∧
=  

||
||

A
WA

.    (7) 

If inequality (7) fails, the system inhibits the winning node J and enables another neuron 

to be selected. This search process continues until the input is either assigned to an existing 

node which satisfies (7) or codes the prototype of a new neuron.  

The ARTa module is part of the larger FAM network which is initialized with an 

arbitrary number N of neurons in F2. Their weight vectors are set to unity Wj1(0) = … =     
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= Wj2M(0) = 1 for all nodes j = 1,…, N. The Map Field weights are set to unity too. 

The vigilance parameter ρ ∈ [0, 1] is initialized with a user-defined value.  

ab
jkw

During supervised training, input vectors Ia are presented to the network together with 

their class labels Ib which in simplified FAM can be coded directly in the binary K-

dimensional vector Yb of positional notation (i.e. ‘1 0 0’ for the first of three classes and ‘0 

0 1’ for the third one). If the ARTa prototype chosen during the search stage for an input 

vector matches the corresponding class label, then an association between the prototype 

and the proper class is formed at the Map Field. Otherwise the Match Tracking (MT) 

process [33] initiates a choice of a new ARTa prototype by increasing the vigilance 

parameter to the value slightly greater than CJ of inequality (7).  

A successful end of search leads to learning changes in the weight vector of the winning 

node: 

oldoldnew )1()( JJJ ββ WWAW −+∧=     (8) 

where β ∈ [0, 1] is the learning rate defining the FAM training dynamics. A β value close 

to 0 provides small gradual changes in the weights and therefore repetitive presentations of 

a training set are needed. The fast learning mode is achieved by setting β = 1. In this mode, 

a network is capable of learning during a single presentation of the training set and has a 

correspondingly short training time. Unfortunately, fast learning exhibits high sensitivity to 

the presentation order of input patterns. This means that the same data presented in a 

different order can cause a somewhat different result. Therefore, several training runs are 

usually needed to get a better estimate of the average classification performance. 

Graphically expressed, weight vectors of the competitive neurons in FAM with 

complement coding can be represented as M-dimensional hyperrectangles (hyperboxes) 

with edges parallel to the coordinate axes in the input space (see Figure 5 for the two-
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dimensional case). All points inside a hyperrectangle defined by the intervals [Wij, 1 –       

– Wi+M,j] belong to the Wj prototype. The hyperbox size | Rj | is calculated as the sum of the 

lengths of its sides:  

∑
=

+ −=−−=
M

i
jijjMij MWWR

1
 , ||))1 ((  || W .    (9) 

 

Figure 5. Growth of the rectangle R1 to the point A during fast learning. 

 

In this geometrical interpretation, the fast learning process could be seen as follows: if 

the hyperrectangle of the winning node J does not already contain an input point A, then it 

expands just enough to include A. Otherwise no update occurs. Starting from a point size, 

the hyperrectangles grow during training each time when it is necessary to enclose a new 

data point, until they achieve a maximum size predefined by the user through the vigilance 

parameter:  

 MρR j )1( || −≤⊕ A      (10) 

where Rj ⊕ A denotes the minimum hyperrectangle containing both Rj and A. Although it 

was supposed [42] that the clusters will oscillate during fast learning, this is not true for 

FAM learning dynamics. Clusters (hyperboxes) will only continuously expand. Inequality 

(10) corresponds to the match criterion (7).  

 

3. Computational 

 

For generation of simulated voltammograms the simulation program EASI [46] written 

in Fortran 77 was used. The PCA and WT procedures were implemented in MATLAB 6.5 
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(with the Wavelet Toolbox). For classification experiments, a FAM implementation from 

the simulator ARTSIM [47] written in Visual C++ was first used. Then the whole 

classification procedure was rewritten in order to incorporate it into the EChem++ 

package. Along with a new graphical user interface based on the QT library [48], it became 

a part of the Analysis module within the EChem++ program available from [23].  

 

4. Results and discussion 

4.1 Data sets 

In order to examine the classification of cyclic voltammograms with FAM, several 

experiments using various data sets were designed. The first data set was composed of 

2754 simulated voltammograms generated under the following conditions: The potential 

was changed between 0 and 0.5 V in 1 mV steps. The formal potential was set as 0.25 V. 

For each combination of the reaction parameters, nine cyclic voltammograms with 

different values of the scan rate (v = 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 V s-1) were 

simulated. 

The cyclic voltammograms should be classified into four classes depending on the 

underlying reaction mechanism. The mechanisms chosen have close relations to each other 

and in extreme cases they result in identical voltammograms. The mechanisms cover a 

single electron transfer step possibly coupled with a homogeneous irreversible chemical 

follow-up reaction. The first two classes were represented by a reversible (E) and quasi-

reversible (Eqr) electron transfer mechanisms without a subsequent chemical reaction. With 

very large values of the heterogeneous constant ks, the Eqr mechanism degenerates to E. A 

total of 17 values of ks were used to produce Eqr curves (Table 1). The second two classes 

were represented by the same mechanisms but with a subsequent chemical reaction (EC 
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and EqrC, respectively). Here, the rate constant k1 of the chemical reaction plays an 

additional role. The 16 values of k1 shown in Table 1 were used. The examples for the EqrC 

mechanism were generated with all possible 272 combinations of the two kinetic constants. 

A variation of this data set was obtained by merging nine voltammograms corresponding 

to different scan rates but with identical reaction parameters in one vector that provided 

306 high-dimensional vectors. 

 

Table 1. Values of k1 and ks used for simulation of voltammograms. 

 

Besides the described data set there were three experimental data sets which consisted of 

72 measured cyclic voltammograms. In the first case the electroactive species was an 

iridium P-C-P-pincer complex I [49]; in the second and third data sets voltammograms of 

two ruthenium complexes II and III [50] were used (Formulae I - III). The signals were 

measured with 9 scan rates of 0.05, 0.1, 0.2, 0.5, 1.003, 2.007, 5.120, 10.240 V s-1 for four 

different initial concentrations of the starting compounds and each scan rate was applied 

twice. The potential was varied between 0 and 0.6 V (iridium complex) or 0.5 V 

(ruthenium complexes) with an increment of 1 mV. From a direct comparison of 

experimental data with various simulated models it is assumed that the measured 

voltammograms correspond to the reaction mechanisms with the parameters presented in 

Table 2. In the classification experiments these data were added to the simulated 

voltammograms which resulted in three data sets of 2826 voltammograms. 

 
Table 2. Parameters of experimental voltammograms. 
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4.2 Data preprocessing 

A common preprocessing method in all experiments was scaling the data first by a factor 

of 10 )( −vAc  (A is the electrode area, c0 is the initial concentration of the starting 

compound). This decreases or even eliminates the influence of A, v and c0 on the data.  

In the first experiment, there was no additional preprocessing. In the following four 

experiments, different preprocessing procedures, i.e. downsampling, Principal Component 

Analysis (PCA), feature extraction, and WT were applied to the data after scaling.  

In the second experiment, downsampling was used to reduce the signals from 1000 to 

200, 100, 40 or 20 points.  

For the third experiment, four and five principal components covering 92.4 % and 95.7% 

of the variance in the data set, respectively, were calculated. PCA is a commonly used 

method to assess the redundancy of a data set [27, 51].  

In the fourth experiment, a simple feature extraction procedure was performed: only the 

peak values were taken from each voltammogram for analysis because of their importance 

for human experts. The peak potential Ep
for and the corresponding current ip

for of the 

forward peak were the first two features; the peak potential difference (Ep
for - Ep

back) and 

the peak current ratio (ip
for/ip

back) were the second two features. The peak potential 

difference is often used for discriminating between reversible and quasi-reversible 

processes, and the peak current ratio can serve as an indicator of a follow-up chemical 

reaction [52]. Note that the definition of the peak current ratio differs from that used earlier 

in [53] due to computational simplicity. In addition to these four features, the half peak 

potential Ep/2 (the potential value corresponding to a current equal to 50% of the peak 

current (ip/2)) was also used for comparison. Figure 6 shows the used features by the 

example of a voltammogram belonging to the E mechanism. This preprocessing method as 
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well as PCA provided the highest reduction of data dimensionality (from 1000 to 4 or 5 

components or features).  

 

Figure 6. Features extracted from a voltammogram. 

 

In the fifth experiment, the discrete WT based on the mother wavelets db4 and db5 (with 

four and five vanishing moments, respectively) from the Daubechies family was used for 

compression of the voltammograms. Other wavelet families such as coiflet-2 [32] were 

also tested; they provide very similar classification results because their shapes are not 

very different from db4 and db5. As a discrete WT requires the length of a signal or the 

number of sample points to be dyadic, i.e. 2
n
, the initial voltammograms were extrapolated 

by so-called smooth padding. This method assumes that a signal is constant outside the 

time interval of a measurement, i.e. a signal extension on the left side is the repetition of 

the first value and on the right side of the last value. Thus, the extended length of signals 

was   1024 = 2
10

. The choice of the decomposition level was made taking into account the 

number of resulting approximation coefficients. Since simulated cyclic voltammograms are 

very smooth, the wavelet coefficients of lower scales (higher frequencies) are close to zero 

and the approximation part can be seen as a very compressed signal representation. 

Approximation coefficients at levels from 3 to 6 were used. 

As an alternative to the analysis of approximation parts, selection of wavelet coefficients 

according to their variability was performed additionally in the fifth experiment. A simple 

method was used to choose the most important wavelet coefficients that exhibit the 

greatest potential to discriminate the classes: only 10 or 20 coefficients with the largest 

variances and large average values were selected for classification. 
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4.3 Training and classification parameters 

In classification applications it is appropriate to use classification accuracy as a 

performance measure of a classifier. In general, it is unrealistic to expect error-free 

classification of a data set, except for really simple problems [45]. Real world data taken 

from distributions of several classes with significant inter-class overlap usually cannot 

conform to perfect class separability without overfitting. Achieving 100% classification 

accuracy would result in overfitting on a particular data set, which automatically leads to 

worse generalization (i.e., classification ability for a new unknown sample). A general way 

to measure the accuracy of a classifier is to count the percentage of misclassifications on a 

separate test set which was not used during training (generalization performance), i.e. its 

error rate. To assess the classification performance independently of presentation order, 30 

random splits of data into training and test parts were undertaken, providing an average of 

error rates calculated for the respective test parts.  

In experiments with simulated voltammograms, the training set consisted of 2000 

samples and the test set of 754 samples for the case of single voltammograms and of 222 

and 84 samples for the case when nine voltammograms corresponding to different scan 

rates were merged in one vector. Classification of experimental voltammograms was made 

using a leave-one-out technique: the classification performance was tested repeatedly on 

each exemplar of the data set after training on the remaining samples. This technique was 

also used for the error analysis of the classifier. 

The FAM classifier was used in the fast learning mode (β = 1). The vigilance parameter 

ρ was set equal to 0.8. 
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4.4 Classification of simulated data 

4.4.1 Comparison of classification with different preprocessing techniques 

Table 3 summarizes the error rates averaged over 30 classification runs on the first data 

set. The results were obtained by applying different preprocessing methods. In all cases, 

the FAM network was able to recognize the reaction mechanisms of the 754 simulated 

voltammograms in the test set with high accuracy (85.8-95.7%). These results also 

demonstrate an essential advantage of FAM – its ability to cope well with high-

dimensional data. Classification was successful for vectors consisting of 1000 components. 

Comparing the input dimensionalities after preprocessing, one can conclude that the best 

classification performance was obtained with a moderate reduction of data dimensionality. 

It was also found that simple downsampling does not affect classification results 

significantly. An error rate of about 5 % was achieved by downsampling of the data to as 

few as 20 points. This good result can be explained in part by the smooth and noise-free 

nature of simulated curves. At this extent of downsampling, however, the classification 

error starts to increase. Thus, a further decrease of the number of data points is not 

advisable. The situation could be relatively more difficult when classifying experimental 

signals with noise. In this case additional preprocessing would be necessary. 

 

Table 3. Classification results for simulated cyclic voltammograms with different 
preprocessing techniques (In experiment 4, four components are without and five with half 
peak potential. Selection in experiment 5 means choosing the wavelet coefficients with the 
largest variances.) 

 

It is worth pointing out that PCA (experiment 3) provided slightly worse classification 

results than extraction of peak values from voltammograms (experiment 4). This confirms 

the importance of human expertise in electrochemical data analysis. However, the use of 
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the few characteristic features usually determined by the chemists seems to be insufficient 

for achieving the best classification performance. The same result was obtained in [18]. 

Nevertheless, it must be mentioned that the dimensionality of the preprocessed data in 

experiments 3 and 4 was much less than in experiment 2. 

Preprocessing by WT (experiment 5) showed classification accuracy very similar to 

downsampling of the signals. However, it is expected that experimental voltammograms 

with a low signal to noise ratio and poor quality would be better classified after WT 

preprocessing. The efficiency of using only approximation coefficients was confirmed by 

the experiments. It can be seen that an alternative method of choosing the most important 

wavelet coefficients by checking their variability in the sixth experiment turned out to be 

insufficient for feature selection.  

For a variation of the first data set consisting of voltammograms merged from nine scan 

rates, two preprocessing techniques, downsampling to 40 points and WT db45, were 

compared. Table 4 contains error rates averaged over 100 classification runs. One can see 

that classification accuracy was again very similar for both preprocessing methods, but it is 

lower as compared to the classification of single voltammograms presented above. This is 

contrary to usual practice in the analysis of voltammograms where series of 

current/potential curves acquired at various scan rates are studied together. The reason for 

this decrease in classification performance is that the size of the training set was 

significantly smaller (9 times) when the merged voltammograms were used, especially 

relative to the increased data dimensionality. For example, only one exemplar of the E 

mechanism was available which could be used either for training or for classification. 

 

Table 4. Classification results for merged voltammograms. 
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4.4.2 Analysis of error distribution 

In order to investigate the classification performance of FAM in more detail, an analysis 

of error distributions was carried out on the simulated data. The aim was to find those 

voltammograms which are most difficult to classify. Figures 7 and 8 show the error 

distribution in the classes for experiments with downsampling to 200 points and 

preprocessing by WT db46, respectively. Two axes represent the values of constants k1 and 

ks, while the third axis quantifies the percentage of misclassifications for 9 voltammograms 

during 100 runs of leave-one-out classification. In this coordinate system, the EC and Eqr 

classes marked by pink and orange colors extend along the first two axes; the E class (red) 

is in the front corner; and the EqrC class (white) occupies the rest of the k1ks-plane. 

Although this visualization helps understand the spatial relationship between the 

mechanisms in the k1ks-space, it should be taken into account that the k-axes have 

nonuniform scales. The classification error was 3.5% and 3.8% for downsampling and WT, 

respectively. 

 

Figure 7. Error distribution of voltammogram classification into classes E/Eqr and 

EC/EqrC after downsampling to 200 points. 

 

It can be seen that most errors are due to misclassifications of EqrC examples as EC or 

Eqr ones and vice versa. This can be explained by the fact that the overlap between these 

classes is high, i.e. the voltammograms of the corresponding two classes in some regions 

of the parameter space become very similar. With increasing k1, the number of 

misclassifications of EqrC as EC grows. As ks decreases, Eqr samples become more likely to 
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be classified as EqrC ones. The results are consistent with expectations: Since class 

boundaries between reaction mechanisms are rather fuzzy, it can be difficult to classify 

voltammograms which lie close to them. It is also interesting to mention that the EqrC class 

is often misclassified as EC, and the Eqr class with small ks as EqrC. Possibly, for a fast 

chemical follow-up reaction (large k1) small changes in the reversibility of the electron 

transfer (as controlled by ks) do not change the shape of the voltammogram to an 

appreciable extent. On the other hand, for very small ks the slow electron transfer remains 

determining the shape even when some material starts to interact in the follow-up reaction. 

This relation is independent of preprocessing. Visual comparison of both plots leads to the 

conclusion that WT preprocessing (Figure 8) has only a minor influence on the error 

distribution. 

 

Figure 8. Error distribution of voltammogram classification into classes E/Eqr and 

EC/EqrC after WT preprocessing with db46. 

 

As compared to the results of studies [14-17] where an expert system was used for an 

automatic elucidation of reaction mechanisms, classification with the NN presented here is 

advantageous because of its high speed and flexibility. The number of supported 

mechanisms can be increased simply by training on a proper data set and therefore it is not 

necessary to construct some theoretical criteria for discriminating between mechanisms. A 

disadvantage is the somewhat “black-box” data processing of an NN, i.e. it is very difficult 

to explain why the network has classified a voltammogram into a certain class. As a 

possible solution a combined neuro-fuzzy system [54] can be proposed. Such algorithms 

allow the user to interpret the decision-making process. 
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4.4.3 Classification and zone diagramms 

In some classical voltammetric papers, e.g. [55], (see also the collection of graphical 

representations in [21]) zone diagrams have been constructed to visualize the relationship 

between similar reaction mechanisms as a function of the fundamental kinetic parameters 

(here k1 and ks) or their functional transformations. The borders between the zones in such 

diagrams were defined on the basis of some criterion, e.g. the peak potential within an 

error boundary of 2 mV [55]. The diagrams allow one to estimate a fraction of the 

parameter space within which the system’s behavior does not depart from that expected for 

certain limiting cases by more than the experimental error. Consequently, they can be used 

to systematically identify limiting behaviors and the transition between such cases. 

Furthermore, the zone boundaries should be those regions in the parameter space where 

voltammograms from the neighboring zones inherently show high similarity.  This 

approach corresponds to clustering in data analysis and can be performed by NNs during 

unsupervised learning on simulated data. In such a case the NN learns to group similar 

voltammograms together building clusters in the parameter space. 

In contrast to the zone diagram approach, the present attempt of classification as a result 

of the supervised learning process assumes that only the most extreme parameter 

combinations belong to the limiting cases. Thus, for example, the border line between the 

EC and EqrC mechanisms is shifted very close to the left hand side of the k1ks-plane shown 

in Figures 7 and 8. Since, however, EqrC voltammograms with large values of ks are almost 

indistinguishable from EC voltammograms, one would expect a high misclassification 

probability near the zone boundaries. Indeed this is the case in our classification 

experiments. A similar effect is, of course, observed for the Eqr/EqrC border line at small k1.   
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4.5 Classification of experimental data 

The data sets including experimental voltammograms were preprocessed by 

downsampling to 200 points as well as by WT db46. With the leave-one-out technique, all 

experimental samples were classified correctly as belonging to the corresponding Eqr or 

EqrC classes independent of preprocessing. The overall error rate was 3.4 % with 

downsampling and 3.9 % with WT which is comparable to 3.3 % obtained in [18] on a 

simulated data set consisted of 885 curves with leave-one-out classification by the nearest 

neighbor classifier. 

 

5. Conclusion and future work 

In this paper, a neural network classification system for cyclic voltammograms is 

introduced. It has been proposed in the framework of the EChem++ project and is 

incorporated into the software as a part of the data analysis module. It is based on the 

Fuzzy ARTMAP classifier and utilizes various data preprocessing techniques. Several 

classification experiments were carried out to examine the performance of the classifier 

and to compare the efficiency of preprocessing methods. They show that the developed 

classification system successfully discriminates between both simulated or experimental 

voltammograms corresponding to different electrode reaction mechanisms. Since the 

experimental data set used contained voltammograms of the Eqr and EqrC mechanisms 

only, additional experiments with extended data sets are planned. Another important aspect 

is to apply an unsupervised learned NN for clustering of simulated voltammograms in 

order to create zone diagrams automatically. 
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Figure captions 
 
Figure 1. An NN in the framework of the electrochemical data processing of the EChem++ 
project. 
 
Figure 2. A discrete WT algorithm. 
 
Figure 3. An example of a wavelet structure. 
 
Figure 4. A simplified FAM network; explanation of symbols, see text. 
 
Figure 5. Growth of the rectangle R1 to the point A during fast learning. 
 
Figure 6. Features extracted from a voltammogram. 
 
Figure 7. Error distribution of voltammogram classification into classes E/Eqr and EC/EqrC 
after downsampling to 200 points. 
 
Figure 8. Error distribution of voltammogram classification into classes E/Eqr and EC/EqrC 
after WT preprocessing with db46. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 30



Tables 
 
 
 
Table 1. Values of k1 and ks used for simulation of voltammograms. 

parameters class me-
chan. k1/s-1 ks/cm s-1

number of 
parameter 

combinations 

number of 
cyclic 

voltamm. 
1 E 0 10000 1 9 

2 Eqr 0 10-5,10-4, 10-3, 0.005, 
0.01, 0.02, 0.03, 0.04, 
0.05, 0.06, 0.07, 0.08, 
0.09, 0.1, 0.5, 1, 10 

17 153 

3 EC 10-7,10-6, 10-5,10-4,10-3, 
10-2, 10-1,1, 10,102,103, 
104, 105,106,107, 108

10000 16 144 

4 EqrC as EC as Eqr 272 2448 

total  306 2754 
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Table 2. Parameters of experimental voltammograms. 

parameters complex mechanism 

k1/s-1 ks/cm s-1

I EqrC 0.3 0.05 

II Eqr 0 0.05 

III Eqr 0 0.06 
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Table 3. Classification results for simulated cyclic voltammograms with different 
preprocessing techniques (In experiment 4, four components are without and five with half 
peak potential. Selection in experiment 5 means choosing the wavelet coefficients with the 
largest variances.) 

Experiment Preprocessing Dimensionality Classification error 
(%) 

Standard 
deviation 

1 - 1000 4.3 1.2 

2 Downsampling 200 4.3 0.9 

 Downsampling 100 4.3 0.9 

 Downsampling 40 4.5 1.0 

 Downsampling 20 5.1 1.2 

3 PCA 4 14.2 2.4 

 PCA 5 12.3 2.2 

4 Feature extraction 4 12.4 2.0 

 Feature extraction 5 10.1 1.7 

5 Wavelet db53 135 4.3 0.8 

 Wavelet db45 38 4.5 1.0 

 Wavelet db46 22 5.0 1.3 

 Wavelet db53 with 
selection 

20 10.3 3.3 

 Wavelet db53 with 
selection 

10 10.7 3.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 33



 
Table 4. Classification results for merged voltammograms. 

Preprocessing Dimensionality Classification error (%) Standard deviation 

Downsampling 360 10.9 2.8 

Wavelet db45 342 11.2 3.1 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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